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David CHATAUR Université de Picardie Jules Verne Parrain
Bernhard KELLER Université Paris Diderot Examinateur
Muriel LIVERNET Université Paris Diderot Examinatrice
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particulièrement pour les encouragements à déposer un projet PRC ; sans cela, le projet
CHARMS n’aurait probablement jamais vu le jour.
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Chapter 0

Introduction

Ce document est un résumé des recherches que j’ai menées depuis la fin de mon doc-
torat. Ces travaux ont porté sur diverses thématiques : catégories triangulées, théorie
des représentations de carquois, combinatoire algébrique, algèbre homotopique. Ils ont
pourtant tous un fil conducteur : la notion de mutation, centrale à la définition d’algèbre
amassée.

Un paradigme commun est également sous-jacent à la majorité de mes recherches ;
celui de la catégorification. Il est mathématiquement pertinent d’enrichir une situation
combinatoire en introduisant des espaces vectoriels dont les dimensions seront les nombres
entiers apparaissant combinatoirement. Cela permet l’utilisation d’applications linéaires,
offrant ainsi à la fois plus de souplesse pour étudier la situation donnée, et plus d’outils
pour répondre aux questions soulevées. Plus généralement, le rôle de la catégorie des
espaces vectoriels peut être joué par diverses catégories plus adaptées au problème. Dans
ce mémoire, il s’agira de la catégorie des représentations d’une algèbre, le plus souvent de
dimension finie sur un corps, définie par un carquois à relations ; ou des variantes de cette
catégorie : catégorie dérivée, catégorie amassée, catégorie des complexes de projectifs à
deux termes. Le point de vue des catégories, l’utilisation ou la construction de structures
sur ces catégories sont donc très présents tout au long du mémoire.

Survol des chapitres

Les algèbres amassées sont définies par générateurs et relations mais, de façon assez in-
habituelle, ces générateurs et relations ne sont pas donnés a priori. Ils sont construits
récursivement, à partir d’une graine initiale, par un processus de mutation qui les fait na-
turellement apparâıtre en sous-ensembles finis appelés amas. Lorsqu’une algèbre amassée
est catégorifiée à l’aide d’une catégorie triangulée, ses variables d’amas et ses amas corre-
spondent à certains objets rigides. Le premier chapitre regroupe des résultats de théorie
des représentations concernant les algèbres d’endomorphismes de ces objets rigides. Nous
tentons de classifier les algèbres d’endomorphismes d’objets rigides qui ne possèdent qu’un
nombre fini de représentations indécomposables à isomorphisme près. Si deux objets rigides
sont reliés par une mutation, nous comparons leurs carquois colorés, ainsi que les catégories
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8 CHAPTER 0. INTRODUCTION

des représentations de leurs algèbres d’endomorphismes.

Dans le chapitre 2, nous nous intéressons à la catégorification additive des algèbres
amassées. Dans ce cadre, les variables d’amas s’obtiennent en appliquant un caractère
d’amas, ou application de Caldero–Chapoton, aux objets rigides indécomposables. Après
s’être intéressé aux algèbres amassées de rang infini, nous nous tournons vers le cas des
algèbres amassées de type fini non simplement lacé : nous démontrons une formule de
multiplication, inspirée des travaux de Philippe Caldero et Frédéric Chapoton, dans le cadre
des algèbres associées aux matrices de Cartan symétrisables par Christof Geiß, Bernard
Leclerc et Jan Schröer. Nous expliquons également comment utiliser le type cone de Peter
McMullen afin d’obtenir toutes les réalisations polytopales des éventails de g-vecteurs des
algèbres amassées de type fini, en revisitant une approche due à Véronique Bazier-Matte,
Guillaume Douville, Kaveh Mousavand, Hugh Thomas et Emine Yıldırım.

Le chapitre 3 concerne le τ -basculement des algèbres aimables, et ses liens avec la
combinatoire algébrique. Après une introduction en douceur au cas des marches dans
les grilles, nous expliquons comment certains résultats de combinatoire algébrique, dus à
Thomas McConville et à Alexander Garver et Thomas McConville, peuvent se réinterpréter,
puis se généraliser en utilisant la théorie des représentations des algèbres aimables. Ceci
permet, en particulier, de montrer que la combinatoire des marches dans une grille, et celle
des accordéons associés à une dissection de surface, peuvent être identifiées et sont une
ombre combinatoire de la notion algébrique de τ -basculement.

Les catégories extriangulées, introduites en collaboration avec Hiroyuki Nakaoka, sont
présentées dans le chapitre 4. Nous introduisons les premières notions liées à cette nou-
velle structure catégorique avant de présenter des résultats de théorie d’Auslander–Reiten
valables dans ce cadre. Nous en proposons ensuite des applications à la théorie des représen-
tations des algèbres aimables et à la combinatoire des accordéons.

Un dernier chapitre déborde légèrement du cadre de la théorie des représentations pour
s’intéresser à deux résultats d’algèbre homotopique :

• Une réinterprétation, à l’aide de structure de modèles, de résultats dus à Aslak B.
Buan et Robert J. Marsh sur les algèbres d’endomorphismes d’objets rigides.

• Une extension de la correspondance de Hovey entre certaines paires de cotorsion et
structures de modèles, du cas des catégories exactes à celui des catégories extrian-
gulées.

Dans ce second point, nous montrons également que la catégorie homotopique d’une
structure de modèles exacte est toujours triangulée. Pour les catégories exactes, ce résultat
n’était connu que dans le cas des paires de cotorsion héréditaires.

Publications et Pré-publications

1. En collaboration avec Arnau Padrol, Vincent Pilaud et Pierre-Guy Plamondon: Asso-
ciahedra for finite type cluster algebras and minimal relations between g-vectors [PPPP19].
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Chapter 1

Endomorphism algebras of rigid
objects in 2-Calabi–Yau triangulated
categories.

This chapter gathers some results from three articles on the endomorphism algebras of
rigid objects in 2-Calabi–Yau triangulated categories. For short, we call those algebras
endo-rigid algebras.

In Section 1.1, our aim is to study the following problem: How can we describe the
endomorphism algebra of some mutation of a rigid object directly from the endomorphism
algebra of the initial rigid object?

This problem was solved by Aslak Buan and Hugh Thomas in [BT09] for the endomor-
phism algebras of d-cluster tilting objects in (d+ 1)-Calabi–Yau categories. In that case, it
is not possible to recover the endomorphism algebra of some mutation µkT of a d-cluster
tilting object T from the datum of the endomorphism algebra of T only. However, the
authors enhance the Gabriel quiver of End(T ) by adding new coloured arrows encoding
“j-step” mutations for j ≤ d. It is then possible to write an algorithm that recovers the
coloured quiver of µkT , and hence the Gabriel quiver of its endomorphism algebra, from
the coloured quiver of T .

Even though this seems to fail for more general rigid objects, we mimic Buan–Thomas’
strategy and give an algorithm solving the problem for rigid objects in cluster categories
of type An (an adaptation to type Dn is possible, by using the punctured disk description
of the cluster category). We only give a partial description of the coloured quiver of µkR
starting from the coloured quiver of R for more general 2-Calabi–Yau categories.

As a tool for studying the case of cluster categories from unpunctured surfaces, we notice
that their Iyama–Yoshino reductions [IY08] can be understood as cutting the surface along
an arc. This is arguably the most interesting result of the paper.

A second question, solved in Section 1.2, is: How closely related is the category of
modules over the endomorphism algebra of a rigid object to that of one of its mutations?

For any mutation of a cluster tilting object in a 2-Calabi–Yau category, the answer is
roughly: they only differ by one simple module [BMR07]. The general case of rigid objects

11



12 CHAPTER 1. ENDO-RIGID ALGEBRAS

is slightly more involved, but gets a similar answer: after passing to some extension-closed
subcategory of the module category, they only differ by one simple object.

In the last Section 1.3, we use Claire Amiot’s classification [Ami07] of triangulated
categories with finitely many isomorphism classes of indecomposable objects in order to
list all endo-rigid algebras of finite representation type coming from maximal rigid objects
in 2-Calabi–Yau triangulated categories.

Along the way, we recover Igor Burban, Osamu Iyama, Bernhard Keller and Idun Re-
iten’s classification [BIKR08] of 2-Calabi–Yau categories with finitely many isoclasses of
indecomposables having cluster tilting objects or non-zero maximal rigid objects respec-
tively. Our classification differs from theirs by gathering those categories in very few families
depending on one or two parameters, making the list easier to remember and highlighting
the similarities between the categories arising from a same family.

I would also like to advertise the categories Db(A3n)/τn[1]. Quite some work has been
done on the cluster tube, e.g. [Vat11, Yan12, HJR14, ZZ14]. The various authors face
technical difficulties, due to the fact that the cluster tube has infinitely many isomorphism
classes of indecomposable objects, that it has non-trivial infinite radical, and that its max-
imal rigid objects are not cluster tilting. On the other hand, the categories Db(A3n)/τn[1]
only have finitely many isomorphism classes of indecomposables, are the mesh categories of
their Auslander–Reiten quivers, and have cluster tilting objects. I believe that everything
that has been done, or is being done, with the cluster tube can be done more easily with
the categories Db(A3n)/τn[1].

Endo-rigid algebras will make another appearance in the last chapter, Section 5.1: If R
is some rigid object in a triangulated category C , the module category of EndC (R) is shown
to be the homotopy category of some model structure on C .

1.1 Coloured quivers for endo-rigid algebras.

In the article [MP14], we introduce mutations and coloured quivers for rigid objects in
2-Calabi–Yau triangulated categories. Our ideas are inspired from [BT09] which covers
the case of d-cluster-tilting objects in (d + 1)-Calabi–Yau triangulated categories. Even
though the case of rigid objects seems too general to hope for a nice theory of mutations,
we give a partial description of a mutation for coloured quivers in 2-Calabi–Yau categories
and an algorithm for mutating coloured quivers in type A. In the case of cluster categories
from surfaces, we relate mutation of rigid objects to flips of dissections. Our main tool
is a combinatorial interpretation of Iyama–Yoshino reductions of cluster categories from
surfaces: Reduction corresponds to cutting along arcs on the surface.

1.1.1 Mutations of rigid objects in 2-CY categories.

Let K be a field. Let C be a K-linear, Hom-finite, Krull–Schmidt, 2-Calabi–Yau trian-
gulated category. Let R = R1 ⊕ · · · ⊕ Rm be a basic rigid object in C and let X be an
indecomposable summand of R.
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For c ∈ Z, consider triangles

X(c) fc−→ B(c) gc−→ X(c+1) −→ ΣX(c)

where f c is a minimal left addR/X-approximation and gc is a minimal right addR/X-
approximation and where X(0) = X. These will be called the exchange triangles for X
with respect to R. They can be constructed using induction on c. We will often write
κ

(c)
R X for X(c), and κ for κ(1); κRX will be referred to as the twist of X with respect to R.

Note that κκ(c) = κ(c+1) = κ(c)κ for all c.
These exchange triangles lift the triangles X(c) −→ 0 −→ ΣRX

(c) −→ ΣRX
(c) in the

Iyama–Yoshino reduction ⊥(ΣR)/R canonically to C . Therefore, X(c) is indecomposable,
rigid and Ext-orthogonal to addR for all c. This justifies the following definition:

Definition 1.1.1. The mutation of R at Rk, where k = 1, . . . ,m, is the rigid object

µRkR = R/Rk ⊕ κRRk.

We note that our use of Iyama–Yoshino to define the mutation above is similar to that
of [BØO11, Sect. 3] where cluster tilting objects are mutated at a non-indecomposable
summand.

In [BT09], the authors associate coloured quivers to d-cluster–tilting objects in (d+ 1)-
Calabi–Yau categories. Here we use the same definition to associate a coloured quiver to
the rigid object R.

Definition 1.1.2. The coloured quiver Q = QR associated with the rigid object R is
defined as follows: The set of vertices is Q0 = {1, . . . ,m}. The set Q

(c)
1 (i, j) of c-coloured

arrows from i to j has cardinality given by the multiplicity of Rj in B
(c)
i , where

R
(c)
i

fci−→ B
(c)
i

gci−→ R
(c+1)
i −→ ΣR

(c)
i

are the exchange triangles as above for Ri with respect to R.

When the category C is a (generalised) cluster category, it is often the case that a
sequence of exchange triangles is periodic. With each vertex k of Q is thus associated an
integer dk (possibly infinite): the periodicity of the sequence of exchange triangles for Rk.
In order to avoid keeping infinitely many arrows starting at each vertex when not necessary,
the colours of the arrows starting at a vertex k are considered as elements in Z/dk. Note
that the periodicity depends on the starting vertex.

An algorithm giving the coloured quiver of a mutation µRkR from the coloured quiver
of R seems too much to hope for in this generality. However, a partial result holds:

Theorem 1.1.3. Let C be a K-linear, Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangu-
lated category. Let Q be the coloured quiver associated with a rigid object R ∈ C and let Q̃
be the coloured quiver associated with µkR, for some vertex k of Q. Denote the periodicity
associated with vertex i of Q (resp. Q̃) by di (resp. d′i), and the number of arrows of Q

(resp. Q̃), from i to j and of colour c, by q
(c)
i,j (resp. q̃

(c)
i,j ).
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(i) We have:

• dk = d′k and

• for any j ∈ Q0 and any c ∈ Z/dk, q̃
(c)
k,j = q

(c+1)
k,j .

(ii) Let i, j ∈ Q0 be such that q
(0)
k,j = 0 = q

(0)
k,i . Then we have:

• d′i = di, d
′
j = dj;

• for any c ∈ Z/dj, q̃(c)
j,k = q

(c−1)
j,k ;

• for any c ∈ Z/di, q̃(c)
i,j = q

(c)
i,j .

Obviously, the proof heavily makes use of the triangulated structure of C .

1.1.2 The case of cluster categories from surfaces.

Let (S,M) be a marked surface: S is an oriented surface with boundary and M is a
finite set of marked points on the boundary of S, with at least one marked point on each
boundary component.

As explained and studied in [BZ11], the works [DWZ08, LF09, KY11, Ami09] allow to
associate a 2-Calabi–Yau triangulated category to (S,M), called the cluster category of
(S,M) and denoted by C(S,M).

Remark 1.1.4. In fact, the category C(S,M) depends on the choice of a triangulation of
(S,M). As explained by Claire Amiot in the appendix of [CS17], the equivalences of
categories induced by changing the choice of a triangulation are not canonical in general,
leading to potential subtle mistakes. However, [CS17, Proposition A.2] shows that such
problems can be avoided in the case of unpunctured surfaces.

Fix a marked surface (S,M) and let D be a dissection (i.e. a subset of a triangulation)
on (S,M).

Definition 1.1.5. Let γ ∈ D and let α, β be the two arcs (either in D or boundary
components) that follow γ in the clockwise ordering at each endpoint of γ (see Figure 1.1).
The flip of D at γ is the dissection

µγD = (D \ {γ}) ∪ {κD(γ)}, where κD(γ) = βγα.

The arcs α, β are called the supporting arcs of the flip.

Let α and β be two arcs in (S,M), and let D be a dissection containing α. Let α1, α2

be the supporting arcs of the flip of D at α. For all c ∈ Z, define the numbers q
(c)
D (α, β) by:

qD(α, β) =


2 if β = α1 = α2

1 if β ∈ {α1, α2} and α1 6= α2

0 otherwise,

q
(c)
D (α, β) = qD(κcD(α), β).
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γ

β

α

κD(γ)

Figure 1.1: The flip of a dissection D at an arc γ: the arc γ (blue) is replaced by the arc
κD(γ) (green).

Definition 1.1.6. Let D = {γ1, . . . , γm} be a dissection of (S,M). The coloured quiver
QD associated with D is defined as follows: The set of vertices is Q0 = {1, . . . ,m}. The

set Q
(c)
1 (i, j) of c-coloured arrows from vertex i to vertex j has cardinality q

(c)
D (γi, γj).

We now fix a background triangulation of (S,M), and thus a cluster-tilting object
T ∈ C(S,M). These data give a bijection between arcs γ on (S,M) and indecomposable
objects Xγ in C(S,M) such that C(S,M)(T,Xγ) is a string module over the gentle algebra
EndC(S,M)

(T ). Recall from [BZ11] that, under this bijection, two arcs α, β cross if and only
if C(S,M)(Xα,ΣXβ) 6= 0.

Proposition 1.1.7. Let R be the rigid object in C(S,M) associated with a dissection D.
Let (S,M)/D be the marked surface obtained from (S,M) by cutting along the arcs in
D. Then the Iyama–Yoshino reduction ⊥(ΣR)/(R) of C(S,M) is equivalent to the cluster
category C(S,M)/D.

Proposition 1.1.8. Let R be the rigid object in C(S,M) associated with a dissection D. Let
Rk be an indecomposable summand of R, and let γk be the corresponding arc of D. For
any α ∈ D, we have:

κRXα
∼= XκD(α) and µRkR

∼= XµkD.

Theorem 1.1.9. Let R be the rigid object in C(S,M) associated with some dissection D.
Then the coloured quivers QD and QR coincide.

As a corollary of Theorem 1.1.9, we give an explicit algorithm for computing the
coloured quiver of a mutation µRkR of a rigid object R in a cluster category of type
A, directly from the coloured quiver of R.
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1.2 Pseudo-Morita equivalences of endorigid algebras.

In the article [MP17] in collaboration with Robert J. Marsh, we compare the module cat-
egories over the endomorphism algebras of two rigid objects related by a single mutation.
We work in the setup of Krull–Schmidt, Hom-finite, triangulated categories. Further gen-
eralisation to cotorsion pairs has appeared in [Nak16].

1.2.1 Motivating example.

Let Q be a linear orientation of the Dynkin diagram of type A3. The Auslander–Reiten
quiver of the acyclic cluster category CQ, defined in [BMR+06], is as follows:

T3

��

ΣT1

��

T1

��

ΣT ∗2

T2

��

??

��

??

ΣT2

��

??

T2

��

??

T1

??

ΣT ∗2

??

T ∗2

??

ΣT3

??

T3

The object T = T1 ⊕ T2 ⊕ T3 is cluster-tilting. Its mutation at T2 is the cluster-tilting
object T ′ = T1 ⊕ T ∗2 ⊕ T3. We write Γ for the cluster-tilted algebra EndC (T )op and Γ′ for
EndC (T ′)op. Then the two algebras Γ and Γ′ are related as follows.

On the one hand, the functor C (T,−) induces an equivalence of categories C /(ΣT ) '
mod Γ, where mod Γ is the category of finitely generated left modules, and the Auslander–
Reiten quiver of mod Γ is thus:

��

��

??

��

??

S2

??

where S2 = C (T,ΣT ∗2 ) is the simple top of the projective indecomposable C (T, T2).
On the other hand, the functor C (T ′,−) induces an equivalence of categories C /(ΣT ′) '

mod Γ′ and the Auslander–Reiten quiver of mod Γ′ is thus:

��S∗2

��

??

��

S∗2

??

??
??
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where S∗2 = C (T ′,ΣT2) is the simple top of the projective indecomposable C (T ′, T ∗2 ), where
the two arrows starting at S∗2 are identified, and where dots indicate zero relations.

The two Auslander–Reiten quivers are not isomorphic, therefore Γ and Γ′ are not Morita
equivalent. But they are not very far from being so: The difference in the Auslander–Reiten
quivers comes from the simples S2 and S∗2 . The common Auslander-Reiten quiver of the
categories mod Γ/(addS2) and mod Γ/(addS∗2) is thus:

��

??

��

??

This phenomenon, proved in [BMR07], has been called “nearly Morita equivalence” by
Claus M. Ringel. Let us state the precise result.

Let Q be an acyclic quiver, and let T be a basic cluster-tilting object in the cluster
category CQ. Let T ′ = T/Tk ⊕ T ∗k be the mutation of T at an indecomposable summand
Tk; then T ′ is also a cluster-tilting object. Let Γ (respectively, Γ′) be the cluster-tilted
algebra EndCQ(T )op (respectively, EndCQ(T ′)op) and Sk (respectively, S∗k) be the simple
top of the projective indecomposable Γ-module CQ(T, Tk) (respectively, the simple top of
the Γ′-module CQ(T ′, T ∗k )).

Then, by [BMR07, Theorem B.], the categories mod Γ/ addSk and mod Γ′/ addS∗k are
equivalent. By [Yan12, Corollary 4.3], nearly-Morita equivalence, in the more general setup
of simple, 2-periodic mutations of rigid objects (or rigid, Krull–Schmidt subcategories) in
any triangulated category, follows from [Pla11b, Proposition 2.7].

Our main aim is to prove an analogous result for any mutation of (non-maximal) rigid
objects. Before explaining our results, let us have a look at an example which shows that
one cannot expect these mutations to induce a nearly-Morita equivalence in general.

Let T = T1 ⊕ T2 ⊕ T3 be the rigid object of the acyclic cluster category C = CA4 given
by:

T3

�� ��

T1

��

��

??

��

??

��

??

T2

��T2

��

??

��

??

��

??

��

??

��
T1

?? ??

T ∗2

?? ?? ??

T3

and let T ′ = T1⊕ T ∗2 ⊕ T3 be the rigid object obtained by mutating T at the summand T2.
This means that ΣT ∗2 is the cone of a minimal right addT/T2-approximation of T2. In the
example, there is a triangle T ∗2 → T1 → T2 → ΣT ∗2 . Let Λ (respectively, Λ′) be the algebra
EndC (T )op (respectively, EndC (T ′)op). Using results in [BM13, BM12] (see also [KR07]),



18 CHAPTER 1. ENDO-RIGID ALGEBRAS

we can easily compute the AR quivers of mod Λ and mod Λ′:

�� ��S∗2

��

??

��

??

��

?? ??

S2

??

mod Λ′ mod Λ

On factoring out by S2 (respectively, S∗2), we obtain the following Auslander-Reiten
quivers:

�� ��

?? ??

��

?? ??

mod Λ′/ addS∗2 mod Λ/ addS2

Therefore, the algebras Λ and Λ′ are not nearly-Morita equivalent. However, these algebras
are not very far from being so: their Auslander–Reiten quivers differ by only one arrow.
The corresponding morphism can be characterised in mod Λ as being surjective with kernel
in the subcategory addS2. We are thus tempted to invert all such morphisms. This is
precisely what we will do in Section 1.2.3. Because Nearly-Morita equivalences do not
involve localisations, but rather ideal quotients, we first give, in Section 1.2.2 a different
version of the statement, that more closely resembles nearly-Morita equivalence, and which
we call:

1.2.2 Pseudo-Morita equivalence.

We fix a field K, and a Krull–Schmidt, K-linear, Hom-finite, triangulated category C ,
with suspension functor Σ. Let T ∈ C be a basic rigid object. Let R be a (non-necessarily
indecomposable) direct summand of T and write T = T ⊕R. Let T ′ be the object obtained
from T by replacing R by the negative shift R∗ of the cone of a minimal right addT -
approximation of R. We thus have a triangle R∗ → B → R → ΣR∗, with B ∈ addT ,
B → R a minimal right addT -approximation, and T ′ = T ⊕ R∗. By [BMR+06, Lemma

6.7], ΣR∗ ∈ T
⊥

. We assume moreover that T ′ is rigid. More precisely, we assume that
R∗ belongs to ⊥ΣT (then R∗ is automatically rigid). This holds for example when C is
2-Calabi–Yau. By [IY08, Proposition 2.6(1)] and [BMR+06, Lemma 6.5], R and R∗ are
basic and have the same number of indecomposable direct summands.

Proposition 1.2.1. The inclusion functor I : T ∗ ΣT → C induces an adjunction

I a R : (T ∗ ΣT )/(ΣT ′)� C /(T
⊥

).
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Proposition 1.2.2. Assume that C has a Serre functor S. Then the inclusion functor
J : (Σ−1ST ) ∗ ST ′ → C induces an adjunction

L a J :
(
(Σ−1ST ) ∗ ST ′

)
/(Σ−1ST )� C /(T

⊥
).

The key to proving those two propositions is the lemma below, inspired from [BM13,
Lemma 3.3]:

Lemma 1.2.3. (a) For each object X ∈ C , there is a triangle Y → R0X → X
g−→ ΣY ,

with R0X ∈ T ∗ ΣT , Y ∈ T⊥ and g ∈ (T⊥).

(b) The subcategory T ∗ ΣT is contravariantly finite in C .

Assuming that C has a Serre functor S, we thus have a pair of adjoint functors (G,H),
where G = LI and H = RJ . We note that, since I, J, L and R are additive, so are G and
H.

C /(T
⊥

)

Rww L ))
T ∗ ΣT/(ΣT ′)

I

77

G // ((Σ−1ST ) ∗ ST ′
)
/(Σ−1ST )

J

ii

H
oo

Theorem 1.2.4. Assume that C has a Serre functor S. Then the functors G and H are
quasi-inverse equivalences of categories. In particular, the categories T ∗ ΣT/(ΣT ′) and
T ∗ ΣT/(T ) are equivalent.

We now want to interpret the subcategories T ∗ΣT and (Σ−1ST )∗ST ′ in representation-
theoretic terms.

We write T = T1⊕· · ·⊕Tn and R = Tn+1⊕· · ·⊕Tm, where the Ti are indecomposable.
We have T ′ = T ⊕ R∗ = T ′1 ⊕ · · · ⊕ T ′m where T ′i = Ti if i ≤ n. Define Λ, to be the
endomorphism algebra EndC (T )op. The algebra Λ′ is defined similarly to be EndC (T ′)op.

Let Sj be the simple top of the indecomposable projective Λ-module C (T, Tj), and let S ′j
be the simple socle of the indecomposable injective Λ′-module DC (ΣT ′j ,ΣT

′). We consider
the exact categories E and E ′ defined as follows. The category E is the full subcategory of
mod Λ, whose objects are those M that satisfy Ext1

Λ(M,Sj) = 0 for all j > n. Similarly,
the category E ′ is the full subcategory of mod Λ′ whose objects N satisfy Ext1

Λ′(S
′
j, N) = 0

for all j > n.
The reason for considering those specific exact subcategories is:

Lemma 1.2.5. (a) The functor C (T,−) induces a fully faithful functor

T ∗ ΣT/(ΣT ) −→ mod Λ.

Its essential image is E .



20 CHAPTER 1. ENDO-RIGID ALGEBRAS

(b) Dually, the functor DC (−,ΣT ′) induces a fully faithful functor

T ∗ ΣT/(T ) −→ mod Λ′.

Its essential image is E ′.

We obtain the following reformulation of Theorem 1.2.4, which is now similar to, but
weaker than, nearly-Morita equivalence [BMR07, Theorem B.]:

Theorem 1.2.6. Suppose that C has a Serre functor. Then there is an equivalence of
categories:

E / add C (T,ΣR∗) ' E ′/ addDC (R,ΣT ′).

Remark 1.2.7. If moreover, R is indecomposable, then C (T,ΣR∗) might not be a simple
module. However, it is simple when seen as an object in E .

1.2.3 Localisation.

We do not assume in this section that C has a Serre functor, except in Corollary 1.2.10.
Recall that, by [KR07, KZ08, IY08, BM13], the functor C (T,−) induces an equivalence

of categories from (T ∗ΣT )/ΣT to mod Λ. In particular, it is dense and full when restricted
to T ∗ ΣT .

Let B be the essential image of C (T,−) : T
⊥ → mod Λ. Let SB,0 be the class of all

epimorphisms f ∈ mod Λ whose kernel belongs to B. Dually, we let B′ be the essential
image of DC (−,ΣT ′) : ⊥ΣT → mod Λ′, and set S0,B′ to be the class of all monomorphisms
g ∈ mod Λ′ whose cokernel belongs to B′.

Let F be the composition of the fully faithful functor

(T ∗ ΣT )/ΣT → (T ∗ ΣT )/ΣT → mod Λ

and the localisation functor mod Λ
LSB,0−→ (mod Λ)[(SB,0)−1]. Then, since C (T,ΣR∗) belongs

to B, we have that F (ΣR∗) ' 0 in (mod Λ)[(SB,0)−1]. Hence, F induces a functor F as in
the following diagram:

T ∗ ΣT/(ΣT )

����

� � //

F

,,

(T ∗ ΣT )/(ΣT ) ' // mod Λ

LSB,0
��

T ∗ ΣT/(ΣT ′) F // (mod Λ)[(SB,0)−1].

(1.1)

The ideal subquotients appearing in Theorem 1.2.6 can alternatively be described as
localisations of the whole module category:

Theorem 1.2.8. The functor F : T ∗ ΣT/(ΣT ′) −→ (mod Λ)[(SB,0)−1] is an equivalence
of categories. Dually, there is an equivalence T ∗ ΣT/(T ) −→ (mod Λ′)[(S0,B′)

−1].



1.3. ENDORIGID ALGEBRAS OF FINITE REPRESENTATION TYPE. 21

Corollary 1.2.9. There is an equivalence of categories

(mod Λ)[(SB,0)−1] ' E / add C (T,ΣR∗)

and, dually, an equivalence of categories

(mod Λ′)[(S0,B′)
−1] ' E ′/ addDC (R,ΣT ′).

Corollary 1.2.10. If the category C admits a Serre functor, then there is an equivalence
of categories:

(mod Λ)[(SB,0)−1] ' (mod Λ′)[(S0,B′)
−1].

Insired by [BM13], we now describe (mod Λ)[(SB,0)−1] as a localisation of C . This is in
fact used in the proof of Theorem 1.2.8.

Notation 1.2.11. We define two classes of morphisms S and S̃ as follows. A morphism

f which is part of a triangle Z
g→ X

f→ Y
h→ ΣZ, belongs to the class S if Z belongs

to T
⊥

and h factors through T⊥. It belongs to the class S̃ if g factors through T
⊥

and
h factors through T⊥. We note that those conditions do not depend on the choice of a
triangle containing f .

Remark 1.2.12. The right approximation R0X → X constructed in Lemma 1.2.3 belongs
to the class S.

Theorem 1.2.13. The functor C (T,−) induces an equivalence of categories:

C (T,−) : C [S̃−1]
'−→ (mod Λ)[(SB,0)−1].

By combining Theorems 1.2.6 and 1.2.13 we can prove:

Theorem 1.2.14. The localisation functor C → C [S̃−1] induces an equivalence of cate-
gories:

C [S−1]
'−→ C [S̃−1].

1.3 Endorigid algebras of finite representation type.

In this section, we recall the results from [BPR16] in collaboration with Aslak B. Buan
and Idun Reiten. We also include the list of all algebraic, d-Calabi–Yau triangulated
categories with finitely many isomorphism classes of indecomposable objects, that can
easily be obtained from [Ami07].

Unless stated otherwise, K will be an algebraically closed field of characteristic zero.
We write Σ for the shift functor in any orbit category, and [1] for the shift in any derived
category. We will use the following notation:

An,t = Db
(
KA(2t+1)(n+1)−3

)
/τ t(n+1)−1[1]

Dn,t = Db
(
KD2t(n+1)

)
/τn+1ϕn,

where ϕ is induced by an automorphism of order 2 of D2t(n+1). The orbit categories that
we consider are triangulated, by [Kel05, Theorem 1].
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1.3.1 Zoology.

In [Ami07, Theorem 7.2], Claire Amiot classified all standard algebraic triangulated cate-
gories with finitely many isomorphism classes of indecomposable objects. By using geomet-
ric descriptions in type A [CCS06] and in type D [Sch14], and direct computations in type
E, Igor Burban, Osamu Iyama, Bernhard Keller and Idun Reiten extracted from Claire
Amiot’s list all 2-Calabi–Yau triangulated categories with cluster tilting objects, and with
non-zero maximal rigid objects (see the appendix of [BIKR08]). In this section, we give a
restatement of the results in the appendix of [BIKR08]. We note two changes from their
lists:

(L1) The orbit category Db(KE8) /τ 4 has cluster tilting objects (this case was first noticed
by Sefi Ladkani in [Lad14, Section 1.4]);

(L2) The orbit category Db(KD4) /τ 2ϕ, where ϕ is induced by an automorphism of D4 of
order 2, has non-zero maximal rigid objects which are not cluster tilting.

Proposition 1.3.1 (Amiot ; Burban–Iyama–Keller–Reiten). The standard, 2-Calabi–Yau,
triangulated categories with finitely many isomorphism classes of indecomposable objects
and with cluster tilting objects are exactly the cluster categories of Dynkin types A, D or E
and the orbit categories:

• (Type A) Db(KA3n) /τn[1], where n ≥ 1;

• (Type D) Db(KDkn) /(τϕ)n, where n ≥ 1, k > 1, kn ≥ 4 and ϕ is induced by an
automorphism of Dkn of order 2;

• (Type E) Db(KE8) /τ 4 and Db(KE8) /τ 8.

Remark 1.3.2. The first two families can presumably serve as categorifications of cluster
algebras of type B,C. As shown by Sefi Ladkani [Lad14], the category Db(KE8) /τ 4 cat-
egorifies cluster algebras of type G2. Surprisingly, the category Db(KE8) /τ 8 only has 24
indecomposable rigid objects and thus does not categorify cluster algebras of type F4 which
have 28 cluster variables. It might be interesting to investigate the image of Db(KE8) /τ 8

under the Caldero–Chapoton map.

Proposition 1.3.3 (Amiot ; Burban–Iyama–Keller–Reiten). The standard, 2-Calabi–Yau,
triangulated categories with finitely many isomorphism classes of indecomposable objects
and with non-zero maximal rigid objects which are not cluster tilting are exactly the orbit
categories:

• (Type A) Db
(
KA(2t+1)(n+1)−3

)
/τ t(n+1)−1[1], where n ≥ 1 and t > 1;

• (Type D) Db
(
KD2t(n+1)

)
/τn+1ϕn, where n, t ≥ 1, and where ϕ is induced by an

automorphism of D2t(n+1) of order 2 ;

• (Type E) Db(KE7) /τ 2 and Db(KE7) /τ 5.
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Figure 1.2: A bijection between 2π
5

-periodic collections of arcs of the heptakaidecagon and
isomorphism classes of basic objects in A3,2. The maximal rigid object used in Table 2 is
highlighted in grey.

The proofs of these statements make use of combinatorial descriptions, involving peri-
odic collections of arcs, of the aforementioned categories. We illustrate this method with
periodic collections of arcs in type A. Figure 1.2 shows the Auslander–Reiten quiver of
the triangulated category A3,2, with a fundamental domain circled in dashed blue lines,
where all indecomposables have been replaced by the corresponding diagonals of the hep-
takaidecagon. The periodic collection of diagonals of the icosikaipentagon associated with
the maximal rigid object of Table 2 in the category A4,2 is drawn in Figure 1.3. Finally, an
example of a periodic collection of diagonals corresponding to a non-rigid indecomposable
object in A4,2 can be found in Figure 1.4. We make use of the same combinatorics in or-
der to explicit a maximal rigid object in each of the families of 2-Calabi–Yau triangulated
category of Propositions 1.3.1 and 1.3.3, and to describe their endomorphism algebras. We
note that they are all Jacobian algebras of quivers with potentials (necessary care being
taken depending on the characteristic of the ground field) except for one that is discussed in
the next section. This section ends with the list of all algebraic, d-Calabi–Yau triangulated
categories with finitely many isomorphism classes of indecomposable objects, extracted
from Claire Amiot’s list. It is out of reach to classify all those that have cluster-tilting
or maximal rigid objects, since this would require decomposing integers into products of
primes. However, for each small value of d, it is possible to mimic the method above and
to give the equivalent of Tables 1 and 2.
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Figure 1.3: A collection of arcs of the icosikaipentagon corresponding to a maximal rigid ob-
ject in A4,2. Each shade of grey appears five times and corresponds to one indecomposable
object.
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Figure 1.4: A collection of arcs of the icosikaipentagon corresponding to a non-rigid inde-
composable object of A4,2.



Table 1: Orbit categories with cluster tilting objects, which are not acyclic cluster categories.

Orbit category Indecomposables Rank Indec. rigids Quiver Relations

Db(KA3n) /τn[1] 3n(n+1)
2

n n(n+ 1) 1 // 2 // 3 n− 1 // n αee α2

Db(KDkn) /τnϕn, kn ≥ 4, k > 1 kn2 n n(n+ 1) 1 // 2 // 3 n− 1 a // n
b
oo αee αk−1 − ab, αa, bα

Db(KE8) /τ 4 32 2 8 1 // 2 αee α3

Db(KE8) /τ 8 64 4 24 1 // 2 a // 3
b

gg // 4 aba, bab

Table 2: Orbit categories with non-cluster tilting, maximal rigid objects.

Orbit category Indecomposables Rank Indec. rigids Quiver Relations

Db
(
KA(2t+1)(n+1)−3

)
/τ k(n+1)−1[1] 1

2
[(2t+1)(n+1)−3](n+1) n n(n+ 1) 1 // 2 // 3 n− 1 // n αee α2

t > 1

Db
(
KD2t(n+1)

)
/τn+1ϕn 2t(n+ 1)2 n n(n+ 1) 1 // 2 // 3 n− 1 // n αee α2

Db(KE7) /τ 2 14 1 2 1 αee α3

Db(KE7) /τ 5 35 2 5 1α 99
β // 2 γee βα− γβ, α2, γ2



26 CHAPTER 1. ENDO-RIGID ALGEBRAS

Dynkin type Restriction on d Auto-equivalence Restrictions on k

An, n odd d even τ k+n+1
2 [1] k| (d−1)n+(d+1)

2
, and (d−1)n+(d+1)

2k
odd

d odd τ k k| (d−1)n+(d+1)
2

An, n even any d
(
τ
n
2 [1]
)k

k|(d− 1)n+ (d+ 1)

Dn, n odd d even τ kϕ k|(d− 1)n− (d− 2)

d odd τ k k|(d− 1)n

τ kϕ k|(d− 1)n and (d−1)n
k

even

D4 any d τ kσ, σ ∈ S3 k|3d− 2 and σ
3d−2
k = 1

Dn, n > 4 even d even τ k k|(d− 1)n− (d− 2)

τ kϕ k|(d− 1)n− (d− 2) and (d−1)n−(d−2)
k

even

d odd τ k k|(d− 1)n− (d− 2)

E6 d even τ kϕ k|1 + 6(d− 1) and 1+6(d−1)
k

odd

d odd τ k k|1 + 6(d− 1)

τ kϕ k|1 + 6(d− 1) and 1+6(d−1)
k

even

E7 any d τ k k|1 + 9(d− 1)

E8 any d τ k k|1 + 15(d− 1)

The d-Calabi–Yau triangulated orbit categories with finitely many isoclasses of
indecomposables.

Here, ϕ is induced by the only non-trivial automorphism of the Dynkin diagram.
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1.3.2 Classification of endorigid algebras.

In [BPR16], we prove that almost all the endorigid algebras appearing in Table 2 above
are 2-Calabi–Yau tilted. The only exception is the algebra Γ given by the quiver

1α 99
β // 2 γee

with relations βα− γβ, α2, γ2. Indeed, this algebra is 1-Gorenstein but we check that it is
not stably 3-Calabi–Yau, hence not 2-Calabi–Yau tilted by [KR07, Theorem 3.3]. In fact,
this algebra is not stably Calabi–Yau hence not d-Calabi–Yau tilted, for any d.

Definition 1.3.4. A finite dimensional K-algebra is standard 2-endorigid if it is isomorphic
to the endomorphism algebra of a maximal rigid object in a standard, K-linear, Krull–
Schmidt, 2-Calabi–Yau, triangulated category.

Recall that the base field K is assumed algebraically closed of characteristic zero.

Theorem 1.3.5. The connected, standard 2-endorigid algebras of finite representation type
are exactly the standard 2-Calabi–Yau tilted algebras of finite representation type listed
in [BØO11, Theorem 5.7] (see also [Lad14, Section 2.6]) and the non-Jacobian endorigid
algebra Γ above.

It is somewhat disappointing that the word “standard” appears in the statement of
Theorem 1.3.5.

Question 1.3.6. Let K be an algebraically closed field of characteristic zero. Are all the
endorigid algebras of finite representation type over K standard 2-endorigid?

We give a partial answer to this question: at least, they are all generalised standard.

Definition 1.3.7. A K-linear, Krull–Schmidt, Hom-finite, triangulated category with a
Serre functor is called generalised standard if all of its morphisms are given by linear
combinations of paths in its Auslander–Reiten quiver.

Proposition 1.3.8. Let C be a K-linear, Krull–Schmidt, 2-Calabi–Yau, triangulated cat-
egory. Assume that T ∈ C is a cluster tilting object whose endomorphism algebra is
generalised standard. Then C is generalised standard.

Corollary 1.3.9. Let C be a K-linear, Krull–Schmidt, 2-Calabi–Yau, triangulated cate-
gory. Assume that T ∈ C is a cluster tilting object whose endomorphism algebra is of finite
representation type. Then C is generalised standard.
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Chapter 2

Cluster algebras and cluster
categories.

In additive categorification of cluster algebras, a Caldero–Chapoton map sends objects in
some (cluster) category to Laurent polynomials. It is aimed at inducing a bijection between
certain specific objects and cluster variables, cluster monomials, or clusters. Due to the
recursive nature of cluster algebras, sending (reachable) indecomposable rigid objects to
cluster variables can be nicely encoded in the following three properties that a Caldero–
Chapoton map should satisfy. Assume that C is a skeletally small, K-linear, Hom-finite,
Krull–Schmidt, 2-Calabi–Yau triangulated category with a basic cluster tilting object T =
T1 ⊕ · · · ⊕ Tn, and that CC is a map sending isomorphism classes of objects to Laurent
polynomials in Q(x1, . . . , xn).

(1) For any i = 1, . . . , n,
CC(Ti) = xi

(2) For any two objects X, Y ,

CC(X ⊕ Y ) = CC(X)CC(Y )

(3) For any two objects X, Y such that dimK Ext1(X, Y ) = 1,

CC(X)CC(Y ) = CC(E) + CC(E ′)

where X → E → Y → ΣX and Y → E ′ → X → ΣY are non-split triangles.

Since the original [GLS07, CC06], that respectively have 44 and 162 citations on Math-
SciNet, constructing Caldero–Chapoton maps in various generality has attracted a lot of re-
search, see for example [CK08, CK06, BMRT07, Pal08, XX10, XX09, Xu10, FK10, Pla11b,
Rup11, Dem11, DX12, DG14, ZZ14, HJ15, DSC15, BR15, HJ16, Wil16, GLS18c, Pes18]

In the first two sections of this chapter, we present two such instances of Caldero–
Chapoton maps: This first one, introduced in collaboration with Peter Jørgensen, is

29
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adapted to cluster-tilting subcategories with possibly infinitely many isoclasses of inde-
composables [JP13]. The second one presents the results obtained so far in a work in
progress with Pierre-Guy Plamondon: Our main, yet unachieved, aim is to find a direct
proof, based on cluster categories, of the multiplication formula for the cluster character
of Christof Geiß, Bernard Leclerc and Jan Schröer in [GLS18c].

In a third section, we present some application of cluster categories to the study of the
type cone of the g-vector fan of cluster algebras of finite type. This is a new approach to a
problem that emerged from mathematical physics [AHBHY18] and was brought to light to
representation theorists in a talk by Hugh Thomas during the conference Cluster algebras:
twenty years on, held at the CIRM in 2018 (see the article [BMDM+18], a second version
of which, that will also include Nathan Chapelier as a co-author, is expected soon).

The final section of this chapter discusses a work in progress with Peter Jørgensen. Over
a cluster-tilted algebra, the support τ -tilting modules of [AIR14] are precisely the images of
cluster-tilting objects in the cluster category. However, the definition of a support τ -tilting
module makes sense over any finite-dimensional algebra. In that more general setting, they
are the images of the 2-term silting complexes in the homotopy category of projectives. In
Section 2.4, we adopt a similar point of view with cluster-tilting objects being replaced by
cotorsion pairs.

2.1 A Caldero–Chapoton map for infinite clusters.

In this section, we report on the article [JP13] in collaboration with Peter Jørgensen. We
check that the Caldero–Chapoton formula also makes sense for cluster tilting subcategories
with infinitely many isomorphism classes of indecomposable objects. However, it does not
always yield a cluster character, but only a (weak) cluster map in the sense of [BIRS09]:
it is generally not defined on every object. We also study the interaction with Iyama–
Yoshino reductions, and we apply our results to the cluster category of type A∞, thus
giving examples of infinite friezes.

2.1.1 The Caldero–Chapoton formula for cluster-tilting subcat-
egories.

Let K be an algebraically closed field, that is assumed of characteristic zero for simplicity.
Let C be a K-linear, Hom-finite, 2-Calabi–Yau, Krull–Schmidt, triangulated category with
a cluster tilting subcategory T .

Notation 2.1.1. For any X ∈ C , we let GX = C (−,ΣX)|T . This yields a functor
from C to the category mod T of finitely presented T -modules, i.e. of cokernels of natural
transformations between representable functors T (−, T ), T ∈ T . We write fl T for the
abelian category of modules of finite length over T .

We note that, since C has weak kernels, the category mod T is abelian. Moreover, the
functor G induces an equivalence of categories C /(T )

'−→ mod T .
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Definition 2.1.2. For any X ∈ C , by [KR07], there are triangles

T1 → T0 → X → ΣT1 and ΣT 1 → X → Σ2T 0 → Σ2T 1.

Let indT X = [T0] − [T1] and coindT X = [T 0] − [T 1] in the split Grothendieck group
Ksp

0 (T ), be the index and coindex of X.

Indices were studied in [Pal08, DK08], related to g-vectors in [Pla11a]. We note the
recent generalisation to higher homological algebra [OT12, Jør18, Rei19].

Lemma 2.1.3. There is a well-defined group homomorphism

K0(mod T )
θT−→ Ksp

0 (T ),

[GX] 7−→ coindT ΣX − indT ΣX.

Definition 2.1.4. Let X ∈ C be such that the module GX has finite length. The Caldero–
Chapoton formula is

φT (X) = x− coindT ΣX
∑

e∈K0(fl T )

χ(Gre(GX))xθT (e) ∈ Q(xT )T∈T ,

where χ denotes the singular Euler characteristic, and Gre(GX) is the Grassmannian of
submodules M of finite length with [M ] = e.

The Caldero–Chapoton formula satisfies some multiplication formulas that makes it a
good candidate for being a (weak) cluster map.

Proposition 2.1.5. Let X, Y ∈ C be such that GX and GY are of finite length. Then:

1. We have φT (X ⊕ Y ) = φT (X)φT (Y )

2. If dim Ext1
C (X, Y ) = 1, and X → E → Y → ΣX, Y → E ′ → X → ΣY are

non-split, then φT (X)φT (Y ) = φT (E) + φT (E ′).

Theorem 2.1.6. Assume moreover that the cluster tilting subcategories that can be reached
from T form a cluster structure in the sense of [BIRS09]. Let R be the full additive sub-
category of C whose indecomposable objects are the indecomposables belonging to reachable
cluster tilting subcategories. Then:

• The Caldero–Chapoton map is a (weak) cluster map φT : objR → Q(xT )T∈T .

• In particular, if T has countably many indecomposable objects up to isomorphism
and A is the cluster algebra associated with the quiver QT of T , then φT induces a
surjection from objR to the cluster variables of A, sending reachable cluster tilting
subcategories to clusters.
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2.1.2 Iyama–Yoshino reductions.

We keep the setup of the previous section.

Definition 2.1.7. Let U be a functorially finite rigid subcategory of C . The Iyama–
Yoshino reduction of C with respect to U is the ideal subquotient CU = ⊥(ΣU)/(U).

Remark 2.1.8. The typical subcategory U will be a full additive subcategory of the
cluster tilting subcategory T obtained by removing only finitely many isomorphism classes
of indecomposable objects.

By [IY08], CU is a K-linear, Hom-finite, 2-Calabi–Yau, Krull–Schmidt, triangulated
category. Its shift functor ΣU is given by the choice of triangles X → UX → ΣUX → ΣX
with UX ∈ U , for each X ∈ ⊥ΣU .

Proposition 2.1.9. Let U be a functorially finite rigid subcategory of C , contained in the
cluster tilting subcategory T . Then, there is a commutative diagram

CU/(T ) �
� //

'
��

C /(T )

'
��

mod T /(U) �
�

π∗
// mod T

where:

1. The functor π∗ is fully faithful and exact.

2. The functor π∗ induces an equivalence of categories between finitely presented T /(U)-
modules and finitely presented T -modules vanishing on U .

Theorem 2.1.10. Let U be a full additive subcategory of T that is functorially finite.
Assume that the cluster tilting subcategories of CU that can be reached from T form a cluster
structure in CU (this holds for instance when the reachable cluster tilting subcategories form
a cluster structure in C ). Then the Caldero–Chapoton map φT /(U) for CU coincides with
the specialization φT |xU=1 for each U∈U .

Remark 2.1.11. By making use of Proposition 2.1.9 and Theorem 2.1.10, we give a set of
sufficient conditions so that the two Caldero–Chapoton formulas actually coincide on the
subcategory ⊥(ΣU) ∩ ⊥(Σ2U), without specializing any variable.

2.1.3 The cluster category of type A∞.

The cluster category CA∞ of type A∞ was introduced and studied by Thorsten Holm
and Peter Jørgensen in [HJ12]. Its indecomposable objects are in bijection with the arcs,
written (m,n) with m 6= n ∈ Z, of an infinity-gon. It has cluster-tilting subcategories that
correspond to triangulations of the infinity-gon that either are locally finite (for each n, it
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Figure 2.1: An example of a locally finite triangulation of the infinity-gon (left) and of a
fountain (right).
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Figure 2.2: A bijection between the arcs of the infinity-gon and the indecomposable objects
of CA∞ , up to ismomorphism.
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contains only finitely many arcs in n) or have a fountain (it contains infinitely many arcs
of the form (m,n) and infinitely many arcs (n, p), for some n). See Figure 2.1.

The Auslander–Reiten quiver of the cluster category CA∞ is of shape ZA∞. A bijection
between arcs and indecomposables is illustrated in Figure 2.2.

We first describe the domain on which the Caldero–Chapoton map is well-defined.

Theorem 2.1.12. Let T be the triangulation of the infinity-gon associated with the clus-
ter tilting subcategory T and consider the cluster map φ : objR → Q(xT )|T∈ind T . The
subcategory R is determined as follows.

1. If T is locally finite, then R = CA∞.

2. If T has a fountain at n, then R is add of the indecomposable objects which are on
or below one of the halflines (−, n) and (n,−) in the AR quiver of CA∞.

(−, n) (n,−)

R R

Our main result on the cluster category of type A∞ is:

Theorem 2.1.13. The cluster map φT : objR → Q(xT )T∈ind T enjoys the following prop-
erties.

1. φT (T ) = xT for T ∈ ind T .

2. If X ∈ R, then φT (X) is a non-zero Laurent polynomial.

3. In each such Laurent polynomial, the coefficients in the numerator are positive inte-
gers.

Our strategy for proving Theorem 2.1.13 is to identify some specific Iyama–Yoshino
reductions of CA∞ that are equivalent to cluster categories of type An so as to make use of
Theorem 2.1.10.

Remark 2.1.14. When T corresponds to the fountain of Figure 2.1, then φT is not a strong
cluster map (i.e. defined on every object) for a good reason. Indeed, we show that there is
no cluster map defined on obj CA∞ that satisfy the three properties of Theorem 2.1.13.

As a consequence of our results, we can compute some infinite version of friezes, adapted
to the Auslander–Reiten quiver of CA∞ .
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Definition 2.1.15. A frieze of the half plane Q = {(m,n) ∈ Z2 | m ≤ n− 2} is a map
r : Q→ Z such that:

1. For all (i, j) ∈ Z2 with i+ 1 ≤ j − 2, r(i, j)r(i+ 1, j + 1)− r(i, j + 1)r(i+ 1, j) = 1.

2. For all i ∈ Z, r(i, i+ 2)r(i+ 1, i+ 3)− r(i, i+ 3) = 1.

Theorem 2.1.16. Let T be a locally finite triangulation of the infinity-gon. Then there is
a frieze r : Q→ Z>0 such that r(t) = 1 for each t ∈ T.

The frieze of Theorem 2.1.16 is obtained by specializing all variables xT to 1 in the
Caldero–Chapoton map φT , with T the cluster tilting subcategory associated with the
triangulation T.

Remark 2.1.17. A vast “generalisation” of Theorem 2.1.16 and of its converse can be
found in [BHJ17].

2.2 A multiplication formula for symmetrizable Car-

tan matrices.

In a series of articles [GLS17, GLS18a, GLS16, GLS18b, GLS18c, GLS18d], Christof Geiß,
Bernard Leclerc and Jan Schröer introduced and studied a family of finite-dimensional
algebras, akin to species, but defined by quivers with relations and over any field. They
are produced from the data of a symmetrizable Cartan matrix and of the choice of a sym-
metrizer. Those algebras are of infinite representation type, and their representation theory
is seemingly quite badly behaved. However, if one only considers their locally free represen-
tations, then they behave much like hereditary algebras. In [GLS18c], it is shown that the
categories of locally free representations can serve as a categorification for non-necessarily
simply-laced cluster algebras of finite type. The authors introduce a Caldero–Chapoton
map adapted to that setup. However, their approach to categorification heavily relies on
Dynkin types as it makes use of the description [GLS16] of the enveloping algebra U(n)
as a convolution algebra of constructible functions on representation varieties of locally
free modules. Our main objective in [PP] is to propose a more direct approach, based on
multiplication formulas for the Caldero–Chapoton map, and to construct cluster categories
associated with symmetrizable Cartan matrices. We prove a multiplication formula similar
to that of Philippe Caldero and Frédéric Chapoton in [CC06] for meshes in the category
of locally free representations. Unfortunately, this formula is not sufficient for our cate-
gorification purpose: In that context, even for finite types, not all cluster variables can be
obtained by considering only almost-split exchange sequences.

2.2.1 Locally-free modules for symmetrizable Cartan matrices.

We first recall the algebras introduced by Christof Geiß, Bernard Leclerc and Jan Schröer
in [GLS17, Section 1.4], and some of their results.

Fix a positive integer n.
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Definition 2.2.1. A symmetrizable generalized Cartan matrix is an n× n integer matrix
C = (ci,j) such that

• ci,i = 2 for all i;

• ci,j ≤ 0 if i 6= j;

• ci,j 6= 0 if, and only if, cj,i 6= 0;

• there exists a diagonal matrix D = diag(c1, . . . , cn) with positive integer coefficients
and such that DC is symmetric.

Notation 2.2.2. We let: gi,j := | gcd(ci,j, cj,i)|, fi,j := |ci,j|/gi,j.

Definition 2.2.3. An orientation of C is a choice of Ω ⊂ {1, 2, . . . , n}2 such that

• Ω ∩ {(i, j), (j, i)} 6= ∅ if, and only if, ci,j < 0;

• if the pairs (i1, i2), (i2, i3), . . . , (it, it+1) all belong to Ω, then i1 6= it+1.

Choosing an orientation of C is equivalent to choosing an acyclic orientation of the
graph with n vertices, where i and j are joined by an edge whenever ci,j < 0.

For a skew-symmetrizable generalized Cartan matrix C with an orientation Ω, define
the quiver Q = Q(C,Ω) as follows. The vertices of Q are the integers 1, . . . , n. The arrows
of Q are of two kinds:

• for all vertices i, there is a loop εi : i→ i;

• for all (i, j) ∈ Ω and all 1 ≤ g ≤ gi,j, an arrow α
(g)
i,j : j → i.

Finally, if D is a symmetrizer of C, then define the algebra H = H(C,D,Ω) to be the
quotient of the path algebra kQ by the ideal generated by the following relations:

• for all vertices i, εcii = 0;

• for all (i, j) ∈ Ω and each 1 ≤ g ≤ gi,j, ε
fj,i
i α

(g)
i,j = α

(g)
i,j ε

fi,j
j .

Let H = H(C,D,Ω) be as above. For each vertex i, let Hi = k[εi] ∼= k[X]/(Xci).

Definition 2.2.4. A representation M of H is locally free if for every vertex i, the Hi-
module Mei is free. Denote by repl.f.(H) the full subcategory of mod(H) consising of all
the locally free modules. In that case, the rank vector of M is

rank(M) :=
(

rankHi(Mei)
)
i=1,...,n

.

Finally, a locally free module M is τ -locally free if for all integers n, τnM is locally free.

The following theorem explains why considering locally free representations should be
natural, and it will allow us to associate a cluster category with the algebra H(C,D,Ω).
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Theorem 2.2.5 (Theorem 1.1 of [GLS17]). The algebra H is 1-Iwanaga–Gorenstein, and
the following properties are equivalent for an H-module M :

1. M has projective dimension at most 1;

2. M has injective dimension at most 1;

3. M has finite projective dimension;

4. M has finite injective dimension;

5. M is locally free.

We cite one more theorem that illustrates that categories of locally free modules over
the algebra H behaves quite similarly to the categories of all representations over hereditary
algebras.

Theorem 2.2.6 (Theorem 1.2 of [GLS17]). Assume that C is connected. Then there are
only finitely many isomorphism classes of τ -locally free H-modules if, and only if, the
matrix C is of Dynkin type. In that case:

1. The map M 7→ rank(M) gives a bijection between the indecomposable τ -locally free
H-modules (up to isomorphism) and the positive roots of the complex semisimple Lie
algebra associated to C;

2. If M is an indecomposable H-module, then the following are equivalent:

(a) M is preprojective;

(b) M is preinjective;

(c) M is τ -locally free;

(d) M is locally free and rigid.

The following fact is quite useful.

Proposition 2.2.7. (Laurent Demonet [GLS18d, Lemma 6.2]) Any τ -rigid H-module is
locally free.

2.2.2 Cluster categories for symmetrizable Cartan matrices.

In case the symmetrizer is the identity, cluster categories where defined in [BMR+06] as or-
bit categories of the derived categories of representations of the corresponding quiver. They
were shown to be triangulated by Bernhard Keller in [Kel05] who used dg-enhancements in
order to construct the “triangulated hull” of an orbit category. Because they also include
indecomposable objects corresponding to the cluster variable of the initial seed of a clus-
ter algebra, cluster categories are a natural setup for the Caldero–Chapoton map to live
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in. In [PP], we apply Bernhard Keller’s approach in order to define cluster categories for
symmetrizable Cartan matrices.

Because the algebras H of Geiß–Leclerc–Schröer are of infinite global dimension, we
cannot make use of the bounded derived category as in [Kel05]. Instead, we are led to con-
sider the perfect derived category (the two categories coincide for finite global dimension).
The construction of [Kel05], recalled below, readily applies to perfect derived categories of
algebras that are 1-Iwanaga–Gorenstein, a property that is satisfied by the algebras H.

Let H = H(C,D,Ω) be as in Section 2.2.1, and let D(H) be the (unbounded) derived
category of H and per(H) be its perfect derived category: the smallest triangulated full
subcategory of D(H) containing H.

By [Hap91], the Nakayama functor ν =? ⊗LH DH : D(H) → D(H) restricts to an
equivalence

ν : per(H)
'−→ per(H).

Define

F = ν ◦ [−2] : per(H)→ per(H).

The functor F enjoys the following properties that are key to constructing the triangulated
hull:

Lemma 2.2.8. Let F be the autoequivalence ν ◦ [−2] of per(H). Then

1. There is a complex of H-H-bimodules X such that ?⊗LHX is isomorphic to F , where:

(a) the complex X is concentrated in degrees 1 and 2;

(b) the components of X are projective both as left and as right H-modules;

(c) there exists a quasi-isomorphism X
∼−→ DH[−2].

2. For any C,D ∈ per(H), the space D(H)(C,F nD) vanishes for all but finitely many
n ∈ Z.

Definition 2.2.9. The orbit category per(H)/F as the same objects as per(H). For any
two objects C,D ∈ per(H), we let

(per(H)/F )(C,D) :=
⊕
n∈Z

per(H)(C,F nD).

The composition of two morphisms f ∈ per(H)(C,F nD) and g ∈ per(H)(D,F pE) is given
by (F ng) ◦ f .

Even though per(H) is triangulated, the orbit category generally is not (see [Kel05,
Section 3] for counter-examples) which necessitates to embed it into a “smallest” triangu-
lated category: its triangulated hull. Note however that the triangulated hull does not
satisfy any universal property at the level of triangulated categories. To obtain a universal
property, one needs to consider enhancements and enter the world of dg-categories.
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Let H be the dg-category of bounded complexes of projective H-modules. Then
H0(H ) is equivalent to per(H), and tensoring by X defines a dg-functor F̃ : H → H .
Note that F̃ is generally not an equivalence of dg-categories, which explains the form of
the morphism spaces in the definition below.

Definition 2.2.10. [Kel05] The dg orbit category H̃ is the dg-category whose objects are
those of H , and in which the morphism space between two objects A and B is

H̃ (A,B) ∼= colimp

⊕
n≥0

H (F̃ nA, F̃ pB),

where the transition maps for the colimit are given by F̃ : H (F̃ nA, F̃ pB)→H (F̃ n+1A, F̃ p+1B).

With this definition, there is a canonical functor π : H → H̃ which induces an
isomorphism per(A)/F ∼= H0(H )/F → H0(H̃ ).

Finally, let per(H̃ ) be the smallest full triangulated subcategory of D(H̃ ) containing
all representable functors. Then the image of the Yoneda embedding H0(H̃ )→ D(H̃ ) is
contained in per(H̃ ). Combining this embedding with the above isomorphism, we get an
embedding of per(A)/F into the triangulated category per(H̃ ).

Definition 2.2.11. [Kel05] The category per(H̃ ) is called the triangulated hull of the
orbit category per(A)/F .

By [Kel05, Section 5.4] the composition

π : per(A)→ per(A)/F ∼= H0(H̃ ) ↪→ per(H̃ )

is an exact functor.
In [PP], we try and justify that per(H̃ ) is a good candidate for a cluster category

associated with the algebra H. This is corroborated by some of its properties.

Notation 2.2.12. We write CH for per(H̃ ), and call it the cluster category of H.

Remark 2.2.13. In case the symmetrizer is the identity, the triangulated hull is the orbit
category itself [Kel05, Section 6], and the cluster category CH is the usual cluster category
of [BMR+06]. At the moment, we do not know whether this remains true for other choices
of symmetrizers or not.

Proposition 2.2.14. The cluster category CH is Hom-finite, Krull–Schmidt and the image
of H in CH generates CH as a triangulated category.

Definition 2.2.15. Let C be a Hom-finite triangulated category with suspension functor
Σ. Then C is 2-Calabi–Yau if for any two objects X and Y in C , there is a non-degenerate
bilinear form

βX,Y : C (X, Y )× C (Y,Σ2X) −→ k

which is functorial in X and in Y , in the sense that if φ : X ′ → X and ψ : Y → Y ′ are
morphisms, then

βX′,Y ′(ψ ◦ f ◦ φ, g) = βX,Y (f,Σ2φ ◦ g ◦ ψ).
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Theorem 2.2.16. The cluster category CH is 2-Calabi–Yau.

We prove this theorem by first lifting the non-degenerate bilinear form on Kb(projH)
to the dg-category H , then proving that it induces a bilinear form on H̃ .

Unfortunately, the image of H in CH does not seem to be cluster-tilting in general.
However, the category CH satisfies a few more of the properties that hold for cluster
categories.

Proposition 2.2.17. The object πH is rigid in CH : we have CH(πH,ΣπH) = 0. More-
over, for any objects T ∈ addH and any object Y ∈ D(H) which is the cone of a morphism
in addH, the functor π induces an isomorphism

D(H)(T, Y )
∼=−→ CH(πT, πY ).

Corollary 2.2.18. The functor CH(πH,−) induces an equivalence of K-linear categories(
(πH) ∗ ΣπH

)
/(ΣπH)

'−→ modH.

Under this equivalence, the suspension functor Σ corresponds to the Auslander–Reiten
translation τ .

Remark 2.2.19. All the results stated so far hold more generally when replacing H by
any finite-dimensional algebra which is 1-Iwanaga–Gorenstein.

Remark 2.2.20. Specific to the case of the algebra H, there is a well-behaved theory of
mutation for maximal rigid objects in

(
(πH)∗ΣπH

)
∩
(
(Σ−1πH)∗πH

)
, which lifts τ -tilting

mutation from modH to CH .

2.2.3 A multiplication formula.

The definition of cluster characters that we recall here was given in [GLS18c], and gener-
alizes the original definition of [CC06].

Let H = H(C,D,Ω) be as in Section 2.2.1, and let M be a locally free H-module.

Definition 2.2.21. The Grassmannian of locally free submodules of rank vector r of M ,
denoted by Grl.f.(r,M), is the quasi-projective variety whose points parametrize the locally
free submodules of M of rank vector r.

Definition 2.2.22 (Definition 1.1 of [GLS18c]). The Caldero–Chapoton map is the map
X? defined on the set of isomorphism classes of locally free H-modules and with image in
Z[u±1

1 , . . . , u±1
n ] as follows:

XM :=
∑
r∈Nn

χ
(

Grl.f.(r,M)
) n∏
i=1

v
−〈r,rank(Ei)〉H−〈rank(Ei),rank(M)−r〉H
i ,

where
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• vi = u
1/ci
i ;

• Ei is a locally free module whose rank vector is the elementary vector εi (Ei is unique
up to isomorphism);

• χ is the Euler–Poincaré characteristic of complex varieties;

• for any locally free modulesN and P , 〈N,P 〉H := dim HomH(N,P )−dim Ext1
1H(N,P ).

This only depends on the rank vectors of N and P [GLS17, Proposition 4.1], so that
〈 , 〉H is defined on pairs of rank vectors.

Proposition 2.2.23 (Lemma 3.1 of [GLS18c]). Let M and N be two locally free modules.
Then XM⊕N = XM ·XN .

In the case where the symmetrizer D is the identity matrix, this result was proved in
[CC06, Corollay 3.7]. The proof given there does not readily generalize to the case where
D is not the identity, and the proof given in [GLS18c] uses a different approach involving
an action of C∗ on the Grassmannian. Inspired by these methods, we proved the following
generalization of [CC06, Proposition 3.10].

Proposition 2.2.24. Let M and N be indecomposable locally free H-modules, and let

0 −→M
i−→ E

p−→ N −→ 0

be an almost split sequence. Then XM ·XN = XE + 1.

One of the key steps in the proof of Proposition 2.2.24 is the following equalities relating
the Euler characteristics of the Grassmannians of locally free submodules of the terms
appearing in an almost-split sequence.

Lemma 2.2.25. We keep the notations of Proposition 2.2.24. Then for any rank vector
r,

χ
(

Grl.f.(r, E)
)

=

{∑
s+t=r χ

(
Grl.f.(s,M)

)
· χ
(

Grl.f.(t, N)
)

if r 6= rankN ;∑
s+t=r χ

(
Grl.f.(s,M)

)
· χ
(

Grl.f.(t, N)
)
− 1 otherwise.

Remark 2.2.26. Our proof also makes use of C∗-actions, and one of the key ideas is
to enhance the Grassmannian of locally free submodules N ′ of N by “fixing a section”
s : N ′ → E of p.

2.3 The type cone for cluster algebras of finite type.

In this section, reporting on a recent collaboration with Arnau Padrol, Vincent Pilaud
and Pierre-Guy Plamondon, we give a new point of view on the articles [AHBHY18,
BMDM+18]. Motivated by the geometric approach to scattering amplitudes in mathemat-
ical physics, Nima Arkani-Hamed, Yuntao Bai, Song He and Gongwang Yan [AHBHY18]
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contructed new realizations of the classical associahedra as affine sections of the non-
negative orthant Rn

≥0. Their construction was interpreted in representation-theoretic terms
in [BMDM+18] which allowed Véronique Bazier-Matte, Guillaume Douville, Kaveh Mousa-
vand, Hugh Thomas and Emine Yıldırım to give similar (and in fact, all) polytopal realiza-
tions of the g-vector fans of cluster algebras of simply-laced finite types for acyclic initial
seeds. That their constructions give polytopal realizations of g-vector fan turns out to
follow immediately from two specific properties of the type cone of these fans: it has the
unique exchange property and it is simplicial. This is explained in Section 2.3.1, and does
not rely on representation theory. We then make use of representation theory and cate-
gorification in Section 2.3.2 in order to prove that the type cone of the g-vector fans of
any cluster algebra of finite type, with respect to any initial seed, satisfies the required
properties. A similar approach is used in order to give all polytopal realizations of the
g-vector fans of (brick and 2-acyclic) gentle algebras, see Section 4.3.2.

2.3.1 The type cone strategy.

The type cone of a polyhedral fan, introduced by Peter McMullen in [McM73], is a polyhe-
dral cone that parametrizes the set of all possible polytopal realizations of the polyhedral
fan.

Definition 2.3.1. A polyhedral cone is a subset of Rn that is the positive span of finitely
many vectors, or equivalently, that is the intersection of finitely many closed linear half-
spaces. A polyhedral cone is simplicial when it is given by linearly independent vectors.
The intersections of a polyhedral cone with its supporting hyperplanes are called its faces.
Its rays are its 1-dimensional faces and its facets are its codimension one faces.

Definition 2.3.2. A polyhedral fan is a collection of polyhedral cones that is stable under
taking faces and such that the intersection of any two of its cones is a face of both cones.
A polyhedral fan is called simplicial if all its cones are simplicial, complete if the union of
its cones is the whole ambient space Rn and essential if it contains {0}.

Definition 2.3.3. The normal fan of a polytope is the collection of the normal cones of
all its faces. A polytope P is a polytopal realization of F if F is the normal fan of P . A
fan is called polytopal if there exists such a polytopal realization.

Notation 2.3.4. Fix an essential complete simplicial fan F in Rn. Let G the N × n-
matrix whose rows are the rays of F and let K be a (N − n)×N -matrix that spans the
left kernel of G (i.e. KG = 0). For any height vector h ∈ RN , we define the polytope

Ph := {x ∈ Rn | Gx ≤ h} ,

where u ≤ v if and only if for all i, ui ≤ vi.

Definition 2.3.5. The type cone of F is the cone TC(F ) of all F -admissible height
vectors h ∈ RN :

TC(F ) :=
{
h ∈ RN

∣∣ F is the normal fan of Ph

}
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Figure 2.3: The example of a two-dimensional polytope (black) and its normal fan, given
by its rays (blue).

Notation 2.3.6. For any two adjacent maximal cones R≥0R and R≥0R
′ of F with

Rr {r} = R′ r {r′}, we denote by αR,R′(s) the coefficient of s in the unique linear de-
pendence between the rays of R ∪R′, i.e. such that∑

s∈R∪R′
αR,R′(s) s = 0.

These coefficients are a priori defined up to rescaling, but we additionally fix the rescaling
so that αR,R′(r) + αR,R′(r

′) = 2.

Lemma 2.3.7. [CFZ02, Lemma 2.1] The F -admissible height vectors are characterized by
the inequalities:

TC(F ) =
{
h ∈ RN

∣∣∣ ∑
s∈R∪R′

αR,R′(s)hs > 0
for any adjacent maximal
cones R≥0R and R≥0R

′ of F

}
Because there are redundancies, not all inequalities above will account for a facet of

the type cone, see Figure 2.4.

Definition 2.3.8. A pair of adjacent maximal cones {R≥0R,R≥0R
′} of F is called an

extremal adjacent pair if the associated inequality does account for a facet of the type cone
of F .

Remark 2.3.9. Since the type cone has at least N −n facets, it is simplicial when F has
precisely N − n extremal adjacent pairs. This is the property that we aim at proving for
cluster algebras and for gentle algebras, by using representation theory, in Sections 2.3.2
and 4.3.2

The polyhedral fans that we will consider will all have another usefull property:

Definition 2.3.10. Two rays r and r′ of F are called exchangeable if there are two
adjacent maximal cones R≥0R and R≥0R

′ of F with Rr {r} = R′ r {r′}. The polyhedral
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Figure 2.4: The polytope in grey is determined by four inequalities, out of which the blue,
green and black ones actually account for facets, while the red one is redundant.

fan F satisfies the unique exchange relation property if, for any exchangeable rays r, r′

the linear dependency ∑
s∈R∪R′

αR,R′(s) s = 0

does not depend on the specific choice of the adjacent maximal cones R≥0R,R≥0R
′ above

but only on {r, r′}.

Assuming that F has the unique exchange relation property, its type cone can simply
be defined as:

TC(F ) =
{
h ∈ RN

∣∣∣ ∑
s

αr,r′(s)hs > 0 for any exchangeable rays r and r′ of F
}
.

Under the affine map Rn → RN sending x to h − Gx, the polytope Ph is sent to
the polytope Qh =

{
z ∈ RN

∣∣Kz = Kh and z ≥ 0
}

. This allows for an even simpler
reformulation of the type cone, when it is simplicial, which precisely recovers the polytopal
realizations of [AHBHY18, BMDM+18]. Notably, all coordinates of z and of ` below are
non-negative.

Corollary 2.3.11. Assume that the type cone TC(F ) is simplicial and let K be the (N −
n)×N-matrix whose rows are the inner normal vectors of the facets of TC(F ). Then the
polytope

R` :=
{
z ∈ RN

∣∣ Kz = ` and z ≥ 0
}

is a realization of the fan F for any positive vector ` ∈ RN−n
>0 . Moreover, the polytopes R`

for ` ∈ RN−n
>0 describe all polytopal realizations of F .

In the next section, we will prove that when F is the g-vector fan of a cluster algebra of
finite type (not necessarily simply-laced) with respect to any seed, then TC(F ) is simplicial.
The case of g-vector fans of gentle algebras is considered in Section 4.3.2.
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2.3.2 Simplicial type cones from cluster categories.

In this section, we specialise F to be the fan of g-vectors for a cluster algebra of (not
necessarily simply-laced) finite type, with any given initial seed. For short, this polyhedral
fan is called the cluster fan. Our aim being to apply Corollary 2.3.11, we remark that
the cluster fan F is already known to have the unique exchange relation property, and we
prove that TC(F ) is simplicial.

Let B be any skew-symmetrizable initial exchange matrix, and let FB be the associated
cluster fan.

This first lemma follows from [BMR+06, Theorem 7.5].

Lemma 2.3.12. The cluster fan has the unique exchange relation property.

In order to prove that TC(F ) is simplicial, we describe all extremal exchangeable pairs
of F (see Remark 2.3.9).

Definition 2.3.13. Let Σ = (B,X) be a seed and let x ∈ X be a cluster variable. The
mutation of Σ at x is a mesh mutation that starts (resp. ends) at x if the entries bxy
for y ∈ X are all non-negative (resp. all non-positive). A mesh mutation is initial if it ends
at a cluster variable of an initial seed.

Remark 2.3.14. This definition translates into the language of cluster categories. A mesh
mutation starting at X is precisely a mutation such that the exchange triangle X → E →
Y → ΣX is almost-split. Non-initial mesh mutations thus correspond to meshes of the
cluster category that do not end with an indecomposable object in addT , where T is a
cluster tilting object corresponding to the initial seed.

Let M(B◦) denote the set of all pairs {x, x′} related by non-initial mesh mutations,
and V(B◦) the set of cluster variables. For {x, x′} ∈ M(B◦) and y ∈ V(B◦), the coefficient
αx,x′,y is defined as follows: αx,x′,y is set to be |bxy| if y ∈ X∩X′ and 0 otherwise, where X,X′

are any two clusters such that X r {x} = X′ r {x′}. By the unique exchange relation
property, the coefficients αx,x′,y do not depend on the specific choice of clusters X,X′.

Theorem 2.3.15. Let B be a finite type exchange matrix, and let FB be the associated
cluster fan. The extremal exchangeable pairs of the cluster fan FB correspond to the non-
initial mesh mutations.

This theorem follows from Corollary 2.3.20 below. It implies the following results:

Corollary 2.3.16. The type cone TC(FB) is simplicial.

Corollary 2.3.17. For any ` ∈ RM(B◦)
>0 , the polytope

R`(B◦) :=
{
z ∈ RV(B◦)

∣∣∣ z ≥ 0 and zx+zx′−
∑

y∈V(B◦)

αx,x′,y zy = `{x,x′} for all {x, x′} ∈ M(B◦)
}

is a generalized associahedron, whose normal fan is the cluster fan FB. Moreover, the
polytopes R`(B◦) for ` ∈ RM(B◦)

>0 describe all polytopal realizations of FB.
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In order to prove Theorem 2.3.15, we prove an analogue, for cluster categories, of a result
of Maurice Auslander on the Grothendieck group of Artin algebras of finite representation
type.

Let C be a cluster category with finitely many isomorphism classes of indecomposable
objects. Let Ksp

0 (C ) be the split Grothendieck group of C . Fix a cluster-tilting object T ∈
C , and let K0(C ;T ) be the quotient of Ksp

0 (C ) by the relations [X] + [Z] − [Y ] for all

triangles X −→ Y −→ Z
h−→ ΣX with h ∈ (ΣT ). The reason for considering this specific

version of the Grothendieck group is:

Lemma 2.3.18. Let X → Y → Z
h−→ ΣX be any triangle in C . Then, we have indT (Y ) =

indT (X) + indT (Z) if and only if h belongs to the ideal (ΣT ).

Denote by g : Ksp
0 (C ) → K0(C ;T ) the canonical projection. For any indecompos-

ableX ∈ C , write `X = [X]+[Σ−1X]−[E], where E is the middle term of an almost split tri-
angle starting at X. For any objects X, Y ∈ C , we write 〈X, Y 〉 for dimK HomΛ(FX,FY ),
where Λ is the cluster-tilted algebra EndC (T ) and F is the equivalence of categories C (T,−) :
C /(ΣT )→ mod Λ.

Theorem 2.3.19. The set LC := {`X | X ∈ ind(C ) r add(ΣT )} is a basis of the kernel
of g and, for any x ∈ ker(g), we have

x =
∑

A∈ind(C )radd(ΣT )

〈x,A〉
〈`A, A〉

`A.

Corollary 2.3.20. Let X −→ E −→ Y
h−→ ΣX be a triangle with h ∈ (ΣT ). Then the

element x = [X] + [Y ] − [E] of the kernel of g is a non-negative linear combination of
the `A, with A ∈ ind(C ) r add(ΣT ).

2.4 Tau-cotorsion pairs.

2.4.1 Cluster categories and tau-cotorsion pairs.

Let K be a field and let Λ be a finite-dimensional K-algebra. We write mod Λ for the abelian
category of finitely presented Λ-modules, and proj Λ for its full subcategory of projective
modules. The functor D is the K-duality D(−) = HomK(−,K).

Considering the images in the modules category over a cluster-tilted algebra of all
cotorsion pairs in a cluster category leads to the following definition.

Definition 2.4.1. A τ -cotorsion pair over Λ is a quadruple (U ,V , P,Q), where U ,V are
additive subcategories of mod Λ and P,Q ∈ proj Λ are basic, which satisfies:

(α0) addP = proj Λ ∩ ⊥U ;

(β0) addQ = proj Λ ∩ ⊥V ;
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(α1) For anyM ∈ mod Λ, we haveM ∈ U if and only if HomΛ(M, τV ) = 0, HomΛ(V , τM) =
0 and HomΛ(Q,M) = 0;

(β1) For anyN ∈ mod Λ, we haveN ∈ V if and only if HomΛ(N, τU ) = 0, HomΛ(U , τN) =
0 and HomΛ(P,N) = 0;

(γ0) U is a precovering subcategory of mod Λ;

(γ1) DΛ has an add(τU ⊕ νP )-precover;

(δ0) V is a preenveloping subcategory of mod Λ;

(δ1) Λ has a add(τ−1V ⊕ ν−1Σ2Q)-preenvelope.

Remark 2.4.2. In conditions (α1) and (β1), requiring the vanishing of τ -orthogonals in
both direction might seem like the wrong thing to do. However, it is reminiscent of Aslak
B. Buan and Robert J. Marsh’s definition of τ -exceptional sequences [BM18]. Moreover,
the symmetry of first extensions in a 2-Calabi–Yau category forces this vanishing in both
directions upon us.

Notation 2.4.3. For any additive subcategory U of mod Λ, write U ⊥ for the Hom-
perpendicular subcategory and U ⊥τ for the full subcategory of all those modules M that
satisfy HomΛ(U , τM) = 0. One defines ⊥τU similarly. For any additive subcategory
A = M ×P of mod Λ × proj Λ, let A ⊥EΛ denote the full subcategory of all those pairs
(N,Q) ∈ mod Λ× proj Λ that satisfy N ∈M⊥τ ∩ ⊥τM ∩P⊥ and Q ∈ proj Λ ∩ ⊥M .

Remark 2.4.4. The notation above allow for an alternative, more concise, definition. A
τ -cotorsion pair over Λ is equivalently a pair (S ,T ) = (U ×addP,V ×addQ) of additive
subcategories of mod Λ× proj Λ satisfying S = T ⊥EΛ , T = S ⊥EΛ , (γ0), (γ1), (δ0), (δ1).

The following method supplies a wealth of examples of τ -cotorsion pairs when Λ is
representation-finite: Let A0 = M0 ×P0 be an additive subcategory of mod Λ × proj Λ.
Define B = (A0)⊥EΛ and A = B⊥EΛ . Then the pair (A ,B) satisfies conditions (α0), (α1),
(β0), (β1). When Λ is assumed representation-finite, the remaining conditions appearing
in the definition of a τ -cotorsion pair are automatically satisfied. In [JP19], we apply this
method in order to classify all τ -cotorsion pairs over some Nakayama algebras, by means
of arc diagrams [Ada16, Section 2.2].

We now investigate another method for constructing τ -cotorsion pairs: Those are bi-
jectively related to (usual) cotorsion pairs in 2-Calabi–Yau triangulated categories.

Let C be a K-linear, Hom-finite, Krull–Schmidt, triangulated 2-Calabi–Yau categories
with a cluster tilting object T . Write Λ for the endomorphism algebra of T in C .

Notation 2.4.5. The functor C (T,−) : C → mod Λ induces an equivalence of categories
C /(ΣT ) ' mod Λ.

• For an additive subcategory X of C , we let X denote the image of X under the
functor C (T,−) and P−(X ) a basic projective Λ-module such that addP−(X ) =
Σ−1X ∩ addT .
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• Let (A ,B) be a pair of additive subcategories of C . We associate to this pair the
quadruple (A ,B, P−(A ), P−(B)).

Definition 2.4.6. If U is an additive subcategory of mod Λ, we call special lift of U the
additive subcategory A of C such that A = U and A ∩ add ΣT = 0.

Theorem 2.4.7. Let C be a K-linear, Hom-finite, Krull–Schmidt, triangulated 2-Calabi–
Yau categories with a cluster tilting object T , and let Λ be the endomorphism algebra of T
in C .

(i) Let (A ,B) be a pair of additive subcategories of C . Then (A ,B) is a cotorsion pair
if and only if (A ,B, P−(A ), P−(B)) satisfies (α0), (α1), (β0), (β1), (γ0), (γ1).

(ii) The correspondence sending the pair (A ,B) of additive subcategories of C to the
quadruple (A ,B, P−(A ), P−(B)) induces a bijection between cotorsion pairs in C
and τ -cotorsion pairs in mod Λ. The inverse bijection is obtained by sending (U , P )

to the additive subcategory of C generated by Ũ and Σ−1P , where Ũ is a special lift
of U .

We note the following step in the proof of Theorem 2.4.7, that might be of independent
interest.

Proposition 2.4.8. An additive subcategory A is precovering in C if and only if the pair
(A , P−(A )) satisfies conditions (γ0)and (γ1)of Definition 2.4.1.

We obtain, as a specific case of Theorem 2.4.7:

Corollary 2.4.9. The correspondence sending (A ,B) to (A ,B) induces a bijection be-
tween cotorsion pairs (A ,B) such that A ∩ add Σ−1T = 0 and B ∩ add Σ−1T = 0 and
pairs (U ,V ) of additive subcategories of mod Λ satisfying:

(α′0) proj Λ ∩⊥ U = 0;

(β′0) proj Λ ∩⊥ V = 0;

(α′1) For any M ∈ mod Λ, we have M ∈ U if and only if HomΛ(M, τV ) = 0 and
HomΛ(V , τM) = 0;

(β′1) For any N ∈ mod Λ, we have N ∈ V if and only if HomΛ(N, τU ) = 0 and
HomΛ(U , τN) = 0;

(γ0) U is a precovering subcategory of mod Λ;

(γ1) DΛ has a τU -precover.
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2.4.2 Tau-cotorsion pairs and two-term silting complexes.

Let K [−1,0](proj Λ) be the full subcategory Λ ∗ ΣΛ of Kb(proj Λ). Its objects are the so-
called two-term complexes, i.e. the complexes concentrated in cohomological degrees -1
and 0. Inspired by the bijection between support τ -tilting modules and two-term silting
complexes of projectives [AIR14], we relate τ -cotorsion pairs to Ext-orthogonal pairs of
subcategories of K [−1,0](proj Λ).

We thus have a functor H0(−) : K [−1,0](proj Λ) → mod Λ, inducing an equivalence of
categories

K [−1,0](proj Λ)/(ΣΛ) ' mod Λ.

With an additive subcategory X of K [−1,0](proj Λ), we associate the pair

(H0(X ),H1(X ∩ add ΣΛ)).

The reason why conditions (γ0) and (γ1) are part of the definition of a τ -cotorsion pair
is the following proposition that is of independent interest.

Proposition 2.4.10. Let X be an additive subcategory of K [−1,0](proj Λ), and let (U , P ) =
(H0(X ),H1(X ∩add ΣΛ)) be the associated pair. Then X is precovering in K [−1,0](proj Λ)
if and only if U is precovering in mod Λ and DΛ has an add(τU ⊕ νP )-precover.

Theorem 2.4.11. The correspondence sending an additive subcategory X of K [−1,0](proj Λ)
to the pair (H0(X ),H1(X ∩ add ΣΛ)) induces a bijection between:

1. Pairs (X ,Y ) of additive subcategories of K [−1,0](proj Λ) such that

(a) X = ⊥1Y ∩ Y ⊥1;

(b) Y = ⊥1X ∩X ⊥1;

(c) X is precovering and

2. quadruples (U ,V , P,Q) where U ,V are additive subcategories of mod Λ, P,Q are
in proj Λ, satisfying (α0), (α1), (β0), (β1), (γ0), (γ1).

Moreover Y is preenveloping if and only if the associated (U ,V , P,Q) is a τ -cotorsion
pair.
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Chapter 3

Tau-tilting theory of gentle algebras.

In this chapter, we categorify two combinatorial notions of flips by using the τ -tilting
theory [AIR14] of gentle algebras. We show that the flips of non-kissing walks on a
grid [McC17] and the flips of non-crossing accordions [GM18, MP19] on surfaces are both
combinatorial shadows of the mutation of support τ -tilting modules over gentle algebras.

3.1 The non-kissing complex of a gentle algebra.

In order to motivate our results in [PPP17], let us first consider a grid in a row:

In that grid, we are allowed to draw maximal paths, called walks, going from NW (top and
left) towards SE (bottom and right). The path in blue is an example of a straight walk,
while the two paths in red and green are instances of bending walks.

This combinatorics is motivated by the fact that it relates to triangulations of the
polygon: Bending walks are in bijection with diagonals of the polygon.

0

1 2 3 4 5

7

2 3 4 5 6

0

1

2

3

4

5

6

7

The grid has the advantage over the polygon that it naturally gives an orientation to
flips. This grid in a row correspond to an initial triangulation of the form [0 2], [0 3], . . .,

51
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while looking at “staircase ribbon grids” correspond to taking different, acyclic, initial
triangulations, hence changing the orientation of flips.

Using the bijection between bending walks and diagonals of the polygons allows to
transfer the rich combinatorics of triangulations to combinatorics of walks: Crossing, tri-
angulations and flips have natural analogues in the world of walks in the grid.

We note that this combinatorics has been categorified by Philippe Caldero, Frédéric
Chapoton and Ralf Schiffler in [CCS06] with cluster categories [BMR+06] of Dynkin type A.

The combinatorics of triangulations of a polygon generalises to (tagged) triangulations
of marked Riemann surfaces with boundaries, marked points (and punctures). This was
succesfully used in order to study a large class of cluster algebras [FST08]. Some generalised
cluster categories [Ami09, BZ11, QZ17] categorify this class of cluster algebras.

In a quite different direction, Thomas McConville generalised the combinatorics of walks
to the case of grids of any shape. However, a link to representation theory was missing.

The situation is summarized in the following table:

Combinatorics Geometry Representation theory
Grid in a row Polygon Cluster categories of type A
Bending walks diagonals indecomposable (rigid) objects up to isomorphism

“kissing” crossing non-split extensions
non-kissing facets triangulations cluster tilting objects

“flips” flips mutation
Generalisations

Marked surfaces Cluster categories from surfaces
Grids of any shape ?

This justifies our

Aim 3.1.1. Give an algebraic interpretation of non-kissing facets for grids of any shapes.
Cross this bridge between combinatorics and representation theory in both directions.

3.1.1 From grids to grid algebras.

In this section, we describe the result by Thomas McConville, alluded to above, that
motivated the work in [PPP17]. We also explain some of the results in [PPP17] for the
specific case of a grid.

Definition 3.1.2. A grid is a non-empty subset of Z2, whose points will be represented
by area 1 squares, centered in that point. Given a fixed grid G, a walk in G is a maximal
NW to SE path. A straight walk is a walk that only goes S or only goes E. A bending
walk is a non-straight walk, i.e. a walk that bends at least once. There are two families
of walks that bend exactly once: the initial walks, also called projective walks for reasons
that will become clear later, are those that bend precisely once, from N to E. Similarly,
the terminal walks, or shifted projective walks, are those that bend once, from W to S. A
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ω

ω

ω′

ω′

Figure 3.1: The local configuration of a kiss.

walk ω kisses a walk ω′ if the local configuration of figure 3.1 arises: The two walks share
a common subwalk that ω enters from N and leaves towards E, and that ω′ enters from W
and leaves towards S. Note that kisses are oriented. We will nonetheless say that ω and ω′

kiss if ω kisses ω′ or ω′ kisses ω. A non-kissing facet, or simply a facet, is a maximal set of
pairwise non-kissing walks.

We note a few straightforward facts about kissings.

Remark 3.1.3. 1. Because straight walks do not bend, they do not kiss any walk, nor
are they kissed by any walk. We thus often consider reduced facets, where all straight
walks have been removed. The adjective “reduced” will often be omitted.

2. Because a kiss involves a walk bending from N to E and a walk bending from W to
S, the projective walks are pairwise non-kissing. Similarly, shifted projective walks
are pairwise non-kissing.

3. The set of projective walks forms a (reduced) non-kissing facet. This can be seen by
remarking that there is a projective walk attached to each square of the grid, leaving
no room for a W to S bend not involving a kiss. Similarly, the shifted projective
walks form a (reduced) non-kissing facet.

We explicit all walks in a small example. Here is the list of all straight walks in some
“tetrix-shaped” grid:

The walks bending exactly once are as follows (projective walks are in blue, while shifted
projective walks are in red and green):
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The remaining walks bend at least twice and are the following ones:

The next figure illustrates examples of a kiss, of a “shy” kiss, and of three walks that
are pairwise non-kissing:

Theorem 3.1.4 (McConville). Let G be a grid. Then:

1. All non-kissing facets have the same cardinality: The number of bending walks in
each facet is the number of squares of the grid.

2. Let F be a non-kissing facet and let ω ∈ F be a bending walk. Then there is a unique
other bending walk ω′ such that F ′ = F M{ω, ω′} is a non-kissing facet.

Definition 3.1.5. The facet F ′ of the previous theorem is called the flip of F at ω.

We would like to interpret walks in the grid G as indecomposable representations of
some finite-dimensional algebra. Following the type A case, corresponding to a row-grid
and to staircase ribbon grids, a first guess is to consider a graph dual to the grid, oriented
W to E and S to N. However, representations of that quiver do not reflect the fact that
walks can only go from NW to SE. We are thus lead to introduce relations on that quiver,
morally preventing representations to go N or W.

Definition 3.1.6. Let G be a grid. The associated grid algebra is the basic algebra given
by the quiver with relations defined as follows: The quiver of the grid G has set of vertices
the squares of G. Two vertices v, w are linked by an arrow if and only if the two squares
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are adjacent. In that case, the arrow is oriented from W to E and from S to N. The ideal
of relations is generated by quadratic monomials, one for each pair of composable arrows
associated with three unaligned squares.

One can associate a walk on G to each indecomposable representation of the associated
grid algebra: First draw the quiver on the grid; then draw part of a walk by following
the support of the representation on the grid (dark blue) ; finally complete it to a walk
by adding one step N then all W (if possible) on one side, and one step E then all S (if
possible) on the other side (light blue):

This defines a map ω? : M 7→ ωM from the set of indecomposable representations of
the grid algebra to the set of walks in G.

Remark 3.1.7. It is immediate from the construction above that the straight walks are not
in the image of ω?. By considering the reduced facets only, this causes no trouble. However,
the shifted projective walks are not in the image of ω? either. We thus also consider symbols
Pv[1], for each vertex v of the grid quiver, that we think of as shifted indecomposable
projectives. We extend the map ω? by letting ωPv [1] be the shifted projective walk that
bends in the square v.

Notation 3.1.8. For a grid G, with associated grid algebra Λ, we let:

• Wbend(G) be the set of all bending walks in G;

• ind Λ be a set of representatives for the isoclasses of indecomposable Λ-modules;

• Φ≥−1(Λ) = ind Λ t {Pv[1], v ∈ Q0} be the set of almost positive Λ-modules.

Theorem 3.1.9. Let G be any grid and let Λ = KQ/I be the associated grid algebra.
Then:

1. The map ω? induces a bijection Φ≥−1(Λ)→Wbend(G).

2. For any M,N ∈ Φ≥−1(Λ), the walk ωM kisses ωN if and only if HomΛ(N, τM) 6= 0.

Corollary 3.1.10. The map ω? induces a bijection between support τ -tilting modules over
Λ and (reduced) non-kissing facets. Under this bijection, flips correspond to support τ -
tilting mutation.

Question 3.1.11. Grid algebras form a subclass of the class of gentle algebras. Is it
possible to extend the combinatorics of walks, and Theorem 3.1.9, Corollary 3.1.10 to the
class of all gentle algebras? This is our aim in the next section.
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3.1.2 Applications to combinatorics via gentle algebras.

Gentle algebras form a class of algebras whose representation theory is combinatorially
well-behaved. Their indecomposable representations can be described in terms of strings
and bands [BR87], which are certain words in the arrows of a quiver and their formal
inverses. Notably, this class of algebras is shown to be stable under derived equivalence by
Jan Schröer and Alexander Zimmermann in [SZ03].

In this section, we explain how to generalise the combinatorics of walks from the case
of a grid to the case of any gentle algebra.

Definition 3.1.12. A gentle algebra is the algebra KQ/I of a bound quiver (Q, I) satisfying
the following conditions:

• the ideal I is generated by quadratic monomials and is admissible.

• For any arrow α ∈ Q1, there is at most one arrow β such that αβ ∈ I and at most
one arrow γ such that αγ /∈ I.

• For any arrow α ∈ Q1, there is at most one arrow β such that βα ∈ I and at most
one arrow γ such that γα /∈ I.

The main difficulty in tying to generalise the combinatorics of grids to any gentle algebra
is to understand what should play the role of the grid for a gentle algebra that does not
come from a grid. This is precisely what the blossoming bound quiver is made for. We
note that this quiver was independently introduced in [BDM+17] under the name “fringed
quiver”. The same construction had appeared, prior to both [BDM+17, PPP17], in a survey
article by Hideto Asashiba [Asa12]. There, the blossoming bound quiver is used in order
to simplify the definition of the Avella-Alaminos–Geiß invariant [AAG08].

Definition 3.1.13. Let (Q, I) be a gentle bound quiver. The blossoming bound quiver
of (Q, I) is the unique (up to isomorphism) gentle bound quiver (Q`, I`) each of whose
vertex is either a leaf (i.e. of valency one) or four-valent and from which (Q, I) is obtained
by removing all leaves. In other words, (Q`, I`) is obtained from (Q, I) by minimally
making all vertices of Q four-valent. A blossoming vertex, or simply a blossom, is a leaf of
(Q`, I`).

Remark 3.1.14. If the gentle bound quiver (Q, I) is the bound quiver of a grid G, then
its blossoming bound quiver is obtained by considering the boundaries of the grid, as in
Figure 3.2.

Definition 3.1.15. Let (Q, I) be a gentle bound quiver.

1. A string for (Q, I) is a “composable” word in the alphabet given by the arrows of Q
and their formal inverses which does not contain any consecutive

• αα−1 or α−1 α;
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Figure 3.2: The blossoming bound quiver of a grid bound quiver

• αβ or β−1 α−1, with αβ ∈ I.

For each vertex v ∈ Q0, there is also a string of length zero, denoted by εv, that
starts and ends at v. We denote by S(Q, I) the set of strings on (Q, I). As is usual,
we often implicitly identify the two inverse strings ρ and ρ−1.

2. We call negative simple string a formal word of length zero of the form −v, where v is
any vertex of Q0. We let S(Q, I)≥−1 :=S(Q, I) t {−v | v ∈ Q0} be the set of almost
positive strings. Note that εv and −v are different almost positive strings.

3. A walk on (Q, I) is a string for (Q`, I`) that starts and ends in a blossoming vertex.
A straight walk on (Q, I) is a walk that is a path in (Q`, I`). A bending walk is a
walk which is not straight.

Remark 3.1.16. Assuming that (Q, I) comes from a grid, and drawing its blossoming
(Q`, I`) as in Figure 3.2, shows that Definition 3.1.15 generalises the corresponding notions
from Section 3.1.1.

Taking profit of the previous remark leads to the following definition:

Definition 3.1.17. Let (Q, I) be a gentle bound quiver and let (Q`, I`) be its blossoming
bound quiver.

1. If ω is a walk on (Q, I), then a bottom substring of ω is a string σ for (Q, I) such that
ω = ρασβ−1ρ′, for some arrows α, β. Similarly, a top substring of ω is a string σ for
(Q, I) such that ω = ρα−1σβρ′, for some arrows α, β. The terminology is motivated
by the usual schematic representation of a string, see Figure 3.3.

2. A walk ω kisses a walk ω′ if there is a string σ for (Q, I) which is at the same time
a top substring of ω and a bottom substring of ω′.

3. A non-kissing facet of (Q, I) is a maximal set of non self-kissing and pairwise non-
kissing walks on (Q, I).
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ω : •
• •

•ρ
α
��

σ
β
�� ρ′

ω′ : •
• •

•τ
α′
�� σ

β′

��

τ ′

Figure 3.3: Schematic representations of a top substring (left) of a walk ω and of a bottom
substring (right) of a walk ω′. Here, the walk ω kisses ω′ along σ.

Definition 3.1.18. The non-kissing complex NK(Q, I) is the simplicial complex whose
faces are the sets of pairwise non-kissing walks on (Q, I). We note that, by definition, self-
kissing walks never appear in NK(Q, I) and that the straight walks appear in all facets
of NK(Q, I).

In [PPP17], we give two proofs of the following result. One is purely combinatorial, and
heavily inspired from the proof of T. McConville, and the other is purely representation
theoretic and makes use of τ -tilting theory (via the results of Section 3.1.3).

Theorem 3.1.19. Let (Q, I) be any gentle bound quiver with blossoming (Q`, I`).

1. All non-kissing facets of (Q, I) have the same cardinality: The number of bending
walks in each facet is the number of vertices of Q.

2. Let F be a non-kissing facet of (Q, I) and let ω ∈ F be a bending walk. Then there
is a unique other bending walk ω′ such that F ′ = F M{ω, ω′} is a non-kissing facet.

3.1.3 Applications to representation theory.

In this section, we give a representation-theoretic interpretation of Theorem 3.1.19. We note
that this result was also obtained by T. Brüstle, G. Douville, K. Mousavand, H. Thomas
and E. Yıldırım [BDM+17].

We fix a gentle bound quiver (Q, I).

Remark 3.1.20. To any string σ one can associate an indecomposable representation
M(σ) of (Q, I), called a string module: The arrows in the string describe the action of
the linear maps on the basis vectors. Two string modules are isomorphic if and only if the
corresponding unoriented strings are equal.

Notation 3.1.21. We extend the notation of the previous remark by letting M(−v) =
Pv[−1].

In order to interpret walks on (Q, I) as representations of (Q, I), we thus want to
associate a string for (Q, I) to each walk.

Definition 3.1.22. 1. Let σ be a string for (Q, I). A left cohook �for σ is a string
for (Q`, I`) which is maximal of the form αr · · ·α1β

−1 such that αr · · ·α1β
−1σ is a
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string for (Q`, I`). A left cohook always exists, and is unique except if σ has length
zero in which case σ has two left cohooks (this will not cause trouble in the rest of
the definition as these two left cohooks are also right cohooks). Right cohooks �, left
hooks

�

and right hooks
�

are defined similarly.

2. The walk ωσ associated with a string σ is the walk obtained by adding a left and a
right cohook: ωσ = �σ�.

3. The walk ω−v associated with a negative simple string −v is the unique walk of
shape αr · · ·α1εvβ

−1
1 · · · β−1

s . The corresponding string module for (Q`, I`) is the
indecomposable injective at v.

Theorem 3.1.23 ([PPP17, BDM+17]). Let (Q, I) be any gentle bound quiver, with blos-
soming (Q`, I`) and let Λ = KQ/I.

1. The map ω? : S(Q, I)≥−1 →Wbend is bijective.

2. For any almost positive strings ρ, σ ∈ S(Q, I)≥−1, the walk ωρ kisses the walk ωσ if
and only if HomΛ

(
M(σ), τM(ρ)

)
6= 0.

Notation 3.1.24. In the theorem above, we used of the following convention. If P [1] is a
shifted projective, then

• HomA(M, τP [1]) = HomA(P,M) for any representation or shifted projective M ,

• HomA(P [1], τM) = 0 for any representation M .

These choices are motivated by the equivalence [AIR14, Lemma 3.4]

HomA(M, τN) = 0⇔ HomKb(projA)(PN , PM [1]) = 0,

where PM and PN are the minimal projective presentations of the representations M and N .

Corollary 3.1.25. The map ω? : S(Q, I)≥−1 →Wbend induces a bijection between support
τ -tilting modules over (Q, I) and non-kissing facets. Under this bijection, flips correspond
to support τ -tilting mutation.

Remark 3.1.26. 1. Our proof in [PPP17] is quite long compared to the proof in
[BDM+17]. The reason for this is that we first prove a more general result that
holds for any string algebra, and then specialise to gentle algebras.

2. Our result for string algebras gives a relatively easy, combinatorial characterisation
of the pairs of strings (ρ, σ) such that HomΛ

(
M(σ), τM(ρ)

)
6= 0. Such a result was

already known to Florian Eisele, Geoffrey Janssens and Theo Raedschelders [EJR18].
The proof in [EJR18] uses two-term complexes of projectives, whereas we work di-
rectly with modules over A. This explains why our combinatorial characterisation is,
arguably, quite easier to state.
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3.2 Non-kissing complexes are non-crossing complexes.

In the article [PPP17] (see Section 3.1) we have generalised the non-kissing complex from
the case of a grid (due to T. McConville) to the case of gentle algebras. Similar combina-
torics arise from the work of A. Garver and T. McConville on the non-crossing complex of
accordions in a disc. In [PPP18], we generalise the non-crossing complex from the case of
a disc to the case of any marked oriented surface. Once thus generalised, the non-kissing
and the non-crossing complexes become isomorphic. This fact could not be made mathe-
matically precise without passing to the respective generalisations because very few grids
can be described by using accordions on a disc and very few polygon dissections can be
described in terms of grids.

3.2.1 Example of a disc.

We begin this section with a short description of polygon dissections and their accordions.
We fix a 4n-gon P, whose vertices we number from 1 to 4n in clockwise order, and

a dissection D (i.e. a collection of non-crossing diagonals, a.k.a. partial triangulation)
of P. We denote by V (resp. V∗, B) the set of vertices of the form 4k (resp. 4k + 2,
2k + 1). A D-cell is (the closure of) a connected component of P \ D. We assume that
each D-cell contains at most one vertex in V∗. We call V-diagonal a diagonal of P both
of whose endpoints belong to V , and we similarly define B-diagonals. We assume that all
arcs in the dissection D are V-diagonals. A B-diagonal is called external if it is of the form
(4k − 1, 4k + 1) and internal otherwise.

Definition 3.2.1. Define the quiver QD whose vertices are the diagonals of D and whose
arrows are the angles formed by two diagonals in D, oriented counterclockwise. The ideal
ID of the path algebra KQD is the ideal of relations generated by the paths of length two
obtained by composing two arrows corresponding to two different angles in a same D-cell.
We let ΛD be the quotient of the path algebra KQD by the ideal ID.

Remark 3.2.2. Let ΛD be the algebra of Definition 3.2.1.

1. The algebra ΛD is the endomorphism algebra of a rigid object (associated with D) in
the cluster category CA4n−3 .

2. The algebra ΛD is a gentle algebra of finite representation type.

3. The algebras of the form ΛD are precisely the tiling algebras of Raquel Coelho Simões
and Mark Parsons [CSP17], which appear in the article [GG18].

An example of the gentle bound quiver of a dissection is given in Figure 3.4, along with
its blossoming bound quiver.

Definition 3.2.3. (slightly modified version of [MP19]) A D-accordion is a B-diagonal
that crosses a connected subset of the diagonals in D.
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Figure 3.4: The gentle bound quiver of a polygon dissection (green), and its blossoming.
The quiver is blue, and blossoming arrows and vertices are pink. All relations are red.

Figure 3.5: A polygon dissection (green), the external accordions (dashed blue), some
accordions (plain blue) and some non-accordions (dotted red).
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Remark 3.2.4. We note that if D is a triangulation, then any B-diagonal is a D-accordion.

We give several examples, and non-examples, of accordions in Figure 3.5

Definition 3.2.5. A non-crossing facet is a maximal set of pairwise non-crossing D-
accordions.

Note that the external B-diagonals are D-accordions and do not cross any D-accordion;
they thus belong to any non-crossing facet. The well-behaved combinatorics of triangula-
tions and their flips generalise to the case of D-accordions.

Theorem 3.2.6. [GM18, Corollaries 3.6 and 3.9] Let D be a dissection of P. Then

1. Any non-crossing facet has the same cardinality: The number of internal D-accordions
in each facet is the number of diagonals in the dissection D.

2. Let F be a non-crossing facet, and let γ ∈ F be an internal D-accordion. Then there
is a unique other internal accordion γ′ such that F ′ = F M {γ, γ′} is a non-crossing
facet.

Definition 3.2.7. The facet F ′ above is called the flip of F at γ.

3.2.2 Dissections and accordions.

In order to relate non-crossing complexes and non-kissing complexes, we first generalise
the non-crossing complex of accordions on a disc to the case of marked orientable surfaces.
Dissections on surfaces are simply collections of non-crossing arcs on the surface ; but
the definition of an accordion has to be slightly modified in order to be suitable for more
general surfaces than discs. We note that punctures are allowed.

Definition 3.2.8. A marked surface (S,M) is an orientable surface S with boundaries,
together with a set M of marked points which can be on the boundary of S or not.
For V ⊂ S,

(i) a V -arc on (S,M) is a curve on S connecting two points of V and whose interior is
disjoint from M and from the boundary of S.

(ii) a V -curve on (S,M) is a curve on S which at each end either reaches a point of V
or infinitely circles around and finally reaches a puncture of M , and whose interior is
disjoint from M and the boundary of S.

As usual, curves and arcs are considered up to homotopy relative to their endpoints in Sr
M , and curves homotopic to a boundary are not allowed.

Definition 3.2.9. A dissection of (S,M) is a collection D of pairwise non-crossing arcs
on (S,M). The edges of D are its arcs together with the boundary arcs of (S,M). The
faces of D are the connected components of the complement of the union of the edges of D
in the surface S. We denote by V(D), E(D) and F(D) the sets of vertices, edges and faces
of D respectively. We always assume that the dissection D is cellular, i.e. that all its faces
are topological disks. For V ⊆M , a V -dissection is a dissection with only V -arcs.
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Figure 3.6: Some D-accordions (in blue) for the dissections (in green) of a disc, a punctured
disc, a surface with two punctures, a cylinder and a torus.

Definition 3.2.10. A cellular V -dissection D of a marked surface (S, V t V ∗) is called
dualizable if each face of D contains exactly one point of V ∗ (in particular, at most one
boundary edge). In that case, there is a unique dual cellular V ∗-dissection D∗.

Definition 3.2.11. We consider a set B of points on the boundary of the surface S such
that B and V ∪ V ∗ alternate along the boundary of S. The points of B are called the
blossom points. We say that a B-curve is external if it is homotopic to a boundary arc
of S rB, and internal otherwise. We note that no B-curve can cross an external B-curve.
See Figure 3.5, and Figure 3.6 where the blossom points appear as white hollow vertices.

The following definition generalises the one of [MP19] for the case where S̄ is a disk.
A very similar definition appears in [BCS18] in a slightly different context under the name
“permissible arc”.

Definition 3.2.12. Consider two dual cellular dissections D and D∗ of (S,M), where
M = V t V ∗, and let B be the set of blossom points as above. A D-accordion is a
B-curve α of (S,M) such that whenever α meets a face f of D,

(i) it enters crossing an edge a of f and leaves crossing an edge b of f (in other words,
α is not allowed to circle around f ∗ when f ∗ is a puncture),

(ii) the two edges a and b of f crossed by α are consecutive along the boundary of f ,

(iii) α, a and b bound a disk inside f that does not contain f ∗.

By convention, we also consider that the punctures of V are D-accordions that are consid-
ered external. If we were working on the universal cover of the surface, the D-accordion
associated to a puncture would be the infinite line crossing all (infinitely many) arcs at-
tached to the puncture.

Definition 3.2.13. The D-accordion complex Kacc(D) is the simplicial complex whose
faces are the collections of pairwise non-crossing D-accordions. We note that, by definition,
self-crossing accordions never appear in Kacc(D) and that the external accordions appear
in all facets of Kacc(D).
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Definition 3.2.14. We call non-crossing complex of the pair of dual cellular dissec-
tions (D,D∗) the simplicial complex Knc(D,D

∗) :=Kacc(D).

The appearance of the dual cellular dissection D∗ in the non-crossing complexKnc(D,D
∗)

is motivated by the fact that D-accordions can alternatively be defined as D∗-slaloms (see
[PPP18]).

3.2.3 Locally gentle algebras vs surface dissections.

In order to compare the non-kissing complex and the non-crossing complex, we first relate
dissections of surfaces with gentle algebras: We associate a gentle bound quiver to any
surface dissection, and conversely, we use the blossoming bound quiver to construct a
surface with a pair of dual dissections associated with any gentle bound quiver.

The idea of associating an algebra to a surface dissection is not new. Instances of
such constructions appear in the theory of cluster algebras for triangulations [CCS06,
ABCJP10, LF09] and for more general dissections [Dem16, Dem17, DRS12]. In many
cases, the algebras obtained are gentle. It has been shown in [BCS18] that any gentle
algebra can be obtained from some surface dissection, and that the module category of the
algebra has a combinatorial description in terms of curves on the surface.

Conversely, the construction of a surface associated with a gentle algebra has appeared
in [OPS18] where the surface is shown to model the derived category of the gentle alge-
bra. We give a different construction of the same surface in [PPP18], which is obtained by
“glueing” triangles to the arrows of the blossoming quiver, as explained below. Our con-
struction, which is expected to model the category of two-term complexes of projectives,
has the advantage that it easily yields two dual dissections on the surface at the same
time (the dissection and dual lamination of [OPS18]). Note that our dissections are always
cellular, while those in [BCS18] can be arbitrary. Remarkably, gentle algebras and surfaces
were linked recently in [HKK17, LP18], where the Fukaya category of the surface is shown
to be equivalent to the bounded derived category of the associated gentle algebra.

Because punctures are allowed on the combinatorial side (the non-crossing complex),
we are led to consider locally-gentle algebras. Those are the algebras obtained by dropping
the assumption that the ideal is admissible in the definition of a gentle algebra. In other
words, a locally-gentle algebra is a gentle algebra that is not necessarily finite-dimensional.
Locally-gentle algebras are simply called gentle algebras by several authors, e.g. [Sch99].

Definition 3.2.15. A locally-gentle algebra is the algebra of a bound quiver (Q, I) that
satisfies all the assumptions for being gentle (Definition 3.1.12) but admissibility of I.

Let D and D∗ be two dual cellular dissections of a marked surface (S, V t V ∗), and let
B be the set of blossom points.

Definition 3.2.16. The bound quiver of the dissection D is the bound quiver (QD, ID)
defined as follows:

(i) the set of vertices of QD is the set of edges of D;
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Figure 3.7: Constructing a surface from a locally-gentle bound quiver (Definition 3.2.20).

(ii) there is an arrow from a to b for each common endpoint v of a and b such that b
comes immediately after a in the counterclockwise order around v;

(iii) the ideal ID is generated by the paths of length two in QD obtained by composing
arrows which correspond to triples of consecutive edges in a face of D.

The bound quiver of the dissection D∗ is the bound quiver (QD∗ , ID∗) defined by replacing D
by D∗ in the above.

Remark 3.2.17. The blossoming bound quiver (Q`
D, I

`
D ) of the bound quiver (QD, ID) is

obtained with the same procedure by considering additional blossom vertices along the
boundary of the surface.

Lemma 3.2.18. The bound quiver (Q, I)D = (QD, ID) is a locally gentle bound quiver.

Remark 3.2.19. It easily follows from [BH08] that the bound quiver (QD∗ , ID∗) is the
(ungraded) Koszul dual of (QD, ID). In this specific setup, this can be reformulated as
follows: QD∗ = Qop

D and, for any pair of composable arrows α, β ∈ (QD)1, βα ∈ ID∗ if and
only if αβ /∈ ID. In particular, the Koszul dual of a finite-dimensional gentle algebra may
be infinite-dimensional.

Definition 3.2.20. The surface S(Q,I) of a locally-gentle bound quiver (Q, I) is the surface
obtained as follows:

1. Replace (Q, I) by its blossoming (Q`, I`).

2. Glue filled-in triangles on each side of each arrow, one with two green edges, the other
one with two red edges, as shown in Figure 3.7 (left).

3. For any pair of composable arrows α, β ∈ Q`
1 , glue the associated green triangles

along their consecutive edges if αβ /∈ I` (Figure 3.7, middle).

4. For any pair of composable arrows α, β ∈ Q`
1 , glue the associated red triangles along

their consecutive edges if αβ ∈ I` (Figure 3.7, right).

The advantage of Definition 3.2.20 is that it automatically endows S(Q,I) with two
disjoint sets V(Q,I) and V ∗(Q,I) of marked points and two dual cellular dissections D(Q,I)

and D∗(Q,I) defined as follows.
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Definition 3.2.21. The surface S(Q,I) is endowed with

• the set V(Q,I) of green points in Figure 3.7, after the identifications given by step 3.,

• the V(Q,I)-dissection D(Q,I) given by all green edges, after the identifications given by
step 3.

The set V ∗(Q,I) and the V ∗(Q,I)-dissection D∗(Q,I) are defined similarly by using the red vertices
and the red edges.

Proposition 3.2.22. Let (Q, I) be a locally-gentle bound quiver. Then the dissections D(Q,I)

and D∗(Q,I) are cellular and dual to each other.

Theorem 3.2.23. Up to isomorphism, the constructions of Definitions 3.2.16 and 3.2.20
are inverse to each other. They induce a bijection between the set of isomorphism classes
of locally gentle bound quivers and the set of homeomorphism classes of marked surfaces
with a pair of dual cellular dissections.

Remark 3.2.24. Fix a locally-gentle bound quiver (Q, I) and let (Q, I)! be its Koszul
dual (see Remark 3.2.19). The following observations are useful for the computation of
examples.

(i) The set V(Q,I) has one vertex for each straight walk in (Q, I) (equivalently, for each
maximal path in (Q, I)). Finite straight walks yield vertices on the boundary of S(Q,I),
while infinite cyclic straight walks in (Q, I) yield punctures of S(Q,I) in V(Q,I). We
denote by p the number of infinite cyclic straight walks in (Q, I).

(ii) The dissection D(Q,I) has one edge, denoted by ε(a), for each vertex a ∈ Q0, obtained
by concatenation of the two (after the identifications of step 3. in Definition 3.2.20)
green edges that contain a.

(iii) The dissection D(Q,I) has one `-cell for each straight walk of length ` in (Q, I)!.

(iv) Similar statements hold dually for V ∗(Q,I) and D∗(Q,I), and the notations p∗ and ε∗(a)
are defined similarly.

(v) The number of punctures of S(Q,I) is the number p + p∗ of infinite straight walks
in (Q, I) and in (Q, I)!.

(vi) The number b of boundary components of S(Q,I) can be computed as the number of
orbits of blossoming vertices. Here, the orbit of a blossoming vertex v is computed as
follows: Assuming that v is a source, follow the maximal path in Q` starting at v to
obtain a new blossoming vertex v′. Now follow the maximal path in (Q`)! starting
at v′ (equivalently, follow the maximal antipath in Q` ending in v′) to obtain the
blossoing vertex v′′. Iterating this procedure gives all vertices in the orbit of v.
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(vii) The genus of the surface S(Q,I) is

g =
|Q1| − |Q0| − b− p− p∗ + 2

2
,

where b is the number of boundary components (see above for a way to compute b)
and p+p∗ the number of punctures (i.e. infinite straight walks in (Q, I) and in (Q, I)!).

Remark 3.2.25. Using the blossoming bound quiver, the Avella-Alaminos–Geiss invariant
translates into an invariant that is easily read from the surface. Claire Amiot, Pierre-Guy
Plamondon and Sibylle Schroll used this point of view in order to extend the AAG-invariant
into a complete derived invariant. See the beautiful [APS19].

3.2.4 Non-kissing vs non-crossing.

We are now ready to compare the combinatorics of walks and those of accordions. Fix a
locally-gentle bound quiver (Q, I) and let S(Q,I) be the associated marked surface, endowed
with the pair of dual cellular dissections (D(Q,I),D

∗
(Q,I)) as defined in Section 3.2.3. With

each walk on (Q, I), we associate a curve on S(Q,I):

Definition 3.2.26. Let ω be a walk on (Q, I). The associated curve, γ(ω), is obtained by
first drawing the walk on the quiver Q`, and then by embedding the quiver on the surface
S(Q,I).

Lemma 3.2.27. Let ω be a walk on (Q, I). Then γ(ω) is a D(Q,I)-accordion.

Lemma 3.2.28. Two undirected walks ω1 and ω2 on (Q, I) are non-kissing if and only if
the corresponding D(Q,I)-accordions γ(ω1) and γ(ω2) are non-crossing on S(Q,I).

Theorem 3.2.29. The non-kissing and non-crossing complexes are isomorphic:

• for any locally gentle bound quiver (Q, I), the non-kissing complex NK(Q, I) is iso-
morphic to the non-crossing complex Knc(D(Q,I),D

∗
(Q,I)),

• for any pair of dual cellular dissections D,D∗ of an oriented surface, the non-crossing
complex Knc(D,D

∗) is isomorphic to the non-kissing complex NK(QD, ID).

Remark 3.2.30. For Theorem 3.2.29 to make sense, one has to first generalise the non-
kissing complex to the case of locally-gentle algebras. This is done in [PPP18], where we
also give purely combinatorial proofs that those complexes (more precisely: their reduced
versions) are pure and thin, i.e. that all of their facets have the same cardinality, and that
there are well-defined notions of flips.

Remark 3.2.31. If the bound quiver (Q, I) is gentle, then the non-kissing complexNK(Q, I),
and hence the non-crossing complex Knc(D(Q,I),D

∗
(Q,I)), is isomorphic to the support τ -

tilting complex of (Q, I) (see Section 3.1.3), and flips encode support τ -tilting mutations.
The fact that Theorem 3.1.19 generalises to locally-gentle algebras suggests that some
generalisation of τ -tilting theory might be defined for infinite-dimensional locally-gentle
algebras (or their completions).
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Chapter 4

Extriangulated categories.

Extriangulated categories, recently introduced in [NP19], axiomatize extension-closed sub-
categories of triangulated categories in a (moderately) similar way that Quillen’s exact
categories axiomatize extension-closed subcategories of abelian categories. They appear in
representation theory in relation with cotorsion pairs [ZH16, LN17, Liu17], with Auslander–
Reiten theory [INP18], with cluster algebras, mutations, or cluster-tilting theory [CZZ16,
Pre17, ZZ18, LZ18a, LZ18b, PPPP19, ZZ19, Zho19], with Gorenstein-projective objects [LZ19a,
HZZ19b, HZZ19a], with τ -tilting theory [LZ19b], with Cohen–Macaulay dg-modules in the
remarkable [Jin18]. We also note the generalization, called n-exangulated categories [HLN17],
to a version suited for higher homological algebra.

4.1 The axioms for extriangulated categories.

An extriangulated category is the data of an additive category C , an additive bifunctor E :
C op × C → Ab modelling the Ext1-bifunctor, and an additive realization s sending each
element δ ∈ E(Z,X) to some (equivalence classe of) diagram X → Y → Z modelling the
short exact sequences or triangles. Some axioms, inspired from the case of extension-closed
subcategories of triangulated categories have to be satisfied.

4.1.1 Definitions and first properties.

More specifically: fix an additive category C , and an additive bifunctor E : C op×C → Ab.

Definition 4.1.1. For any X,Z ∈ C , an element δ ∈ E(Z,X) is called an E-extension.
A split E-extension is a zero element 0 ∈ E(Z,X), for some objects X,Z ∈ C . For any
two E-extensions δ ∈ E(Z,X), δ′ ∈ E(Z ′, X ′), the additivity of C , E permits to define
the E-extension

δ ⊕ δ′ ∈ E(Z ⊕ Z ′, X ⊕X ′).

Remark 4.1.2. Let δ ∈ E(Z,X) be an E-extension. By functoriality, any morphisms f ∈
C (X,X ′) and h ∈ C (Z ′, Z) induce E-extensions E(Z, f)(δ) ∈ E(Z,X ′) and E(h,X)(δ) ∈

69
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E(Z ′, X). For short, we write f∗δ and h∗δ instead. Using those notations, we have,
in E(Z ′, X ′)

E(h, f)(δ) = h∗f∗δ = f∗h
∗δ.

Definition 4.1.3. A morphism (f, h) : δ → δ′ of E-extensions δ ∈ E(Z,X), δ′ ∈ E(Z ′, X ′)
is a pair of morphisms f ∈ C (X,X ′) and h ∈ C (Z,Z ′) in C , such that f∗δ = h∗δ′.

Definition 4.1.4. Let X,Z ∈ C be any two objects. Two sequences of morphisms in C

X
x−→ Y

y−→ Z and X
x′−→ Y ′

y′−→ Z

are said to be equivalent if there exists an isomorphism g ∈ C (Y, Y ′) such that the following
diagram commutes.

X

Y

Y ′
Z

x 44 y

**

x′ ** y′

44g∼=
��

The equivalence class of X
x−→ Y

y−→ Z is denoted by [X
x−→ Y

y−→ Z].

Notation 4.1.5. For any X, Y, Z,A,B,C ∈ C , and any [X
x−→ Y

y−→ Z], [A
a−→ B

b−→ C],
we let

0 = [X
[ 1
0 ]
−→ X ⊕ Y [ 0 1 ]−→ Y ]

and

[X
x−→ Y

y−→ Z]⊕ [A
a−→ B

b−→ C] = [X ⊕ A
[x 0

0 a ]
−→ Y ⊕B

[
y 0
0 b

]
−→ Z ⊕ C].

Definition 4.1.6. An additive realization s is a correspondence associating, with E-
extension δ ∈ E(Z,X), an equivalence class s(δ) = [X

x−→ Y
y−→ Z] and satisfying the

following condition:

(∗) Let δ ∈ E(Z,X) and δ′ ∈ E(Z ′, X ′) be any pair of E-extensions, with

s(δ) = [X
x−→ Y

y−→ Z] and s(δ′) = [X ′
x′−→ Y ′

y′−→ Z ′].

Then, for any morphism (f, h) : δ → δ′, there exists g ∈ C (Y, Y ′) such that the
following diagram commutes:

X Y Z

X ′ Y ′ Z ′

x // y //

f
��

g
��

h
��

x′
//

y′
//

� �

The sequence X
x−→ Y

y−→ Z is said to realize δ if s(δ) = [X
x−→ Y

y−→ Z], and the
triple (f, g, h) is said to realize (f, h) if the diagram in (∗) commutes.
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Definition 4.1.7. A realization of E is called an additive realization if the following con-
ditions are satisfied:

1. For any X,Z ∈ C , the realization of the split E-extension 0 ∈ E(Z,X) is given
by s(0) = 0.

2. For any two E-extensions δ ∈ E(Z,X) and δ′ ∈ E(Z ′, X ′), the realization of δ ⊕ δ′ is
given by s(δ ⊕ δ′) = s(δ)⊕ s(δ′).

Definition 4.1.8. ([NP19, Definition 2.12]) A triple (C ,E, s) is called an extriangulated
category if the following holds:

(ET1) E : C op × C → Ab is an additive bifunctor;

(ET2) s is an additive realization of E;

(ET3) Let δ ∈ E(Z,X) and δ′ ∈ E(Z ′, X ′) be E-extensions, respectively realized by X
x−→

Y
y−→ Z and X ′

x′−→ Y ′
y′−→ Z ′. Then, for any commutative square

X Y Z

X ′ Y ′ Z ′

x // y //

f
��

g
��

x′
//

y′
//

�

in C , there exists a morphism (f, h) : δ → δ′ satisfying h ◦ y = y′ ◦ g.

(ET3)op Dual of (ET3).

(ET4) Let δ ∈ E(Z ′, X) and δ′ ∈ E(X ′, Y ) be E-extensions realized respectively by

X
f−→ Y

f ′−→ Z ′ and Y
g−→ Z

g′−→ X ′.

Then there exist an object Y ′ ∈ C , a commutative diagram in C

X Y Z ′

X Z Y ′

X ′ X ′

f // f ′ //

g
��

d
��

h // h′ //

g′
��

e
��

δ //

δ′′ //

δ′

��
f ′∗δ
′

��

� �

�

and an E-extension δ′′ ∈ E(Y ′, X) realized by X
h−→ Z

h′−→ Y ′, which satisfy the
following compatibilities.

(i) Z ′
d−→ Y ′

e−→ X ′ realizes f ′∗δ
′,
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(ii) d∗δ′′ = δ,

(iii) f∗δ
′′ = e∗δ′.

(ET4)op Dual of (ET4).

We use the following terminology.

Notation 4.1.9. Let (C ,E, s) be an extriangulated category.

1. A sequence X
x−→ Y

y−→ Z is called a conflation if it realizes some E-extension
in E(Z,X). In which case the morphism X

x−→ Y is called an inflation, writ-

ten X � Y , and the morphism Y
y−→ Z is called a deflation, witten Y � Z.

2. An extriangle is a diagram X
x
� Y

y
� Z

δ
99K where X

x
� Y

y
� Z is a conflation

realizing the E-extension δ ∈ E(Z,X).

3. Similarly, we call morphism of extriangles any diagram

X Y Z

X ′ Y ′ Z ′

x // y // δ //

f
��

g
��

h
��

x′
//

y′
//

δ′
//

where (f, h) : δ → δ′ is a morphism of E-extensions realized by (f, g, h).

The axioms above ensure that any extriangle induce long-ish exact sequences after
application of some covariant or contravariant Hom-functor. In particular in any conflation,
the inflation is a weak kernel of the deflation, and the deflation is a weak cokernel of the
inflation.

Proposition 4.1.10. Assume that (C ,E, s) is an extriangulated category, and let X
x−→

Y
y−→ Z

δ
99K be an extriangle. Then the following sequences of natural transformations are

exact:

C (Z,−)
−◦y−→ C (Y,−)

−◦x−→ C (X,−)
δ]−→ E(Z,−)

y∗−→ E(Y,−)
x∗−→ E(X,−),

C (−, X)
x◦−−→ C (−, Y )

y◦−−→ C (−, Z)
δ]−→ E(−, X)

x∗−→ E(−, Y )
y∗−→ E(−, Z),

where δ](f) = f∗δ and δ](g) = g∗δ.

Remark 4.1.11. Any variant of the axiom (ET4) that would hold in an extension-closed
subcategory of a triangulated category by applying the octahedron axiom also holds in any
extriangulated category. See [NP19, Section 3.2] for more details.

Remark 4.1.12. Based on Andrew Hubery’s notes on the octahedral axiom, Owen Garnier
has studied, in his Master 1 thesis, several equivalent versions of the axiom (ET4).
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4.1.2 Relation with exact or triangulated categories.

We claimed that extriangulated categories generalise both exact and triangulated cate-
gories, and that they axiomatize extension-closed subcategories of triangulated categories.
Let us now justify those claims.

Let C be an additive category equipped with an equivalence [1] : C
'−→ C , and let

E1 : C op × C → Ab be the bifunctor defined by E1 = Ext1(−,−) = C (−,−[1]).

Lemma 4.1.13. Assume that s is an additive realization such that (C ,E1, s) is extriangu-

lated. Then for any A ∈ C , A→ 0→ A[1]
idA[1]

99K is an extriangle.

Proposition 4.1.14. We have the following.

(1) Assume that C is a triangulated category with the shift functor [1]. For any δ ∈
E1(C,A) = C (C,A[1]), take a distinguished triangle

A
x−→ B

y−→ C
δ−→ A[1]

and let s(δ) = [A
x−→ B

y−→ C]. Then (C ,E1, s) is an extriangulated category.

(2) Conversely, assume that s is an additive realization such that (C ,E1, s) is extrian-

gulated. Define that A
x−→ B

y−→ C
δ−→ A[1] is a distinguished triangle if and only

if it satisfies s(δ) = [A
x−→ B

y−→ C]. With this class of distinguished triangles, C
becomes a triangulated category.

Remark 4.1.15. By the construction above, the triangles of a triangulated category C
are precisely the extriangles for the corresponding extriangulated structure.

Let now E be an exact category. Assume that one of the following three conditions
hold:

(i) The category E is skeletally small.

(ii) The exact category E has enough projectives.

(iii) The exact category E has enough injectives.

Then, for any pair of objects A,C ∈ E , the class Ext1
E (C,A), of equivalence classes of

conflations, becomes a set. We thus obtain a biadditive functor Ext1
E : E op × E → Ab. Its

functorial structure is given as follows:

• For any δ = [A
x−→ B

y−→ C] ∈ Ext1(C,A) and any a ∈ E (A,A′), take a pushout in
E , to obtain a morphism of short exact sequences

A B C

PO

A′ M C

x // y //

a
�� ��

m
//

e
//

� .

This gives Ext1
E (C, a)(δ) = a∗δ = [A′

m−→M
e−→ C].
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• For any c ∈ E (C ′, C), the map Ext1
E (c, A) =c∗ : Ext1

E (C,A)→ Ext1
E (C ′, A) is defined

dually by using pullbacks.

Recall that the zero element in Ext1
E (C,A) is given by the split short exact sequence

0 = [A

[
1

0

]
−→ A⊕ C [0 1]−→ C].

For any pair δ1 = [A
x1−→ B1

y1−→ C], δ2 = [A
x2−→ B2

y2−→ C] ∈ Ext1
E (C,A), its sum δ1 + δ2

is given by the Baer sum

∆∗C(∇A)∗(δ1 ⊕ δ2) = ∆∗C(∇A)∗([A⊕ A
x1⊕x2−→ B1 ⊕B2

y1⊕y2−→ C ⊕ C]).

Proposition 4.1.16. Define the realization s(δ) of δ = [A
x−→ B

y−→ C] to be δ itself.
Then (E ,Ext1

E , s) is extriangulated.

In order to prove this result, the following fact is useful.

Lemma 4.1.17. ([Büh10, Proposition 3.1]) For any morphism, (∗) below, of short exact
sequences in E , there exists a commutative diagram (∗∗) whose middle row is also a short
exact sequence, the upper-left square is a pushout, and the lower-right square is a pullback.

In other words, a∗[A
x−→ B

y−→ C] = c∗[A′
x′−→ B′

y′−→ C ′].

(∗)
A B C

A′ B′ C ′

x // y //

a
��

b
��

c
��

x′
//

y′
//

� � (∗∗)

A B C

A′ ∃M C

A′ B′ C ′

PO

PB

x // y //

a
�� ��

m
//

e
//

��
c
��

x′
//

y′
//

�

�

Remark 4.1.18. Some converse to Proposition 4.1.16 holds: If (E ,E, s) is an extriangu-
lated category all of whose inflations are monomorphisms and all of whose deflations are
epimorphisms, then E endowed with the class of E-conflations becomes an exact category.

Definition 4.1.19. Let D ⊆ C be a full additive subcategory, closed under isomorphisms.
The subcategory D is said to be extension-closed if, for any conflation A� B � C which
satisfies A,C ∈ D , then B ∈ D .

Let (C ,E, s) be an extriangulated category, and let D ⊆ C be an extension-closed
subcategory.

Proposition 4.1.20. Let ED to be the restriction of E to Dop × D , and define sD by
restricting s, then (D ,ED , sD) is extriangulated.
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4.2 Auslander–Reiten theory.

In the article [INP18], in collaboration with Osamu Iyama and Hiroyuki Nakaoka, we in-
vestigate the study of Auslander–Reiten theory (following [AR75, AR74]) in extriangulated
categories, initiated by Panyue Zhou and Bin Zhu in [ZZ18, Section 4].

Our main aims were twofold. First, to show that several classical results concerning
existence of almost-split sequences also hold in extriangulated categories. Second, to show
that existence of almost-split sequences is inherited under various constructions (relative
extriangulated structures, ideal quotients and extension-closed subcategories), making it
easier to prove that a given extriangulated category has almost-split sequences.

4.2.1 Almost-split extensions and almost-split sequences.

Definition 4.2.1. An almost-split E-extension δ ∈ E(Z,X) is a non-split E-extension such
that:

(AS1) f∗δ = 0 for any non-section f ∈ C (X,X ′).

(AS2) g∗δ = 0 for any non-retraction g ∈ C (Z ′, Z).

An almost-split sequence is a conflation X
x
� Y

y
� Z realizing an almost-split extension

δ ∈ E(Z,X).

Definition 4.2.2. A non-zero object X ∈ C is said to be endo-local if C (X,X) is local.

Proposition 4.2.3. For any non-split extriangle X
x
� Y

y
� Z

δ
99K, the following holds.

(1) If δ satisfies (AS1), then X is endo-local.

(2) The extension δ satisfies (AS1) if and only if x is left almost-split.

(3) If δ satisfies (AS1), then y is right minimal.

Dual statements concerning condition (AS2) hold.

Definition 4.2.4. An object P ∈ C is called projective if, for anyX ∈ C , we have E(P,X) =
0. Dually, an object I ∈ C is called injective if for any X ∈ C , we have E(X, I) = 0.

Definition 4.2.5. The extriangulated category C is said to have right almost split ex-
tensions if for any endo-local, non-projective object Z ∈ C , there exists an almost split
extension δ ∈ E(Z,X) for some X ∈ C . Dually, we say that C has left almost split
extensions if for any endo-local, non-injective object X ∈ C , there exists an almost split
extension δ ∈ E(Z,X) for some Z ∈ C . We say that C has almost split extensions if it
has right and left almost split extensions.
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4.2.2 Auslander–Reiten–Serre duality.

One of the important features of Auslander–Reiten theory is the so-called Auslander–Reiten
formula, relating first extensions in module categories to morphism spaces in (co-)stable cat-
egories. We show that Auslander–Reiten formula holds for Krull–Schmidt extriangulated
categories. Because extriangulated categories generally do not have enough projectives or
injectives, one might think of two competing definitions for the (co-)stable category. The
most relevant one seems to be:

Definition 4.2.6. We denote by P (respectively, I) the ideal of C consisting of all mor-
phisms f satisfying E(f,−) = 0 (respectively, E(−, f) = 0). The stable category (respec-
tively, costable category) of C is defined as the ideal quotient

C := C /P (respectively, C := C /I).

Remark 4.2.7. (a) The bifunctor E : C op × C → Ab induces a bifunctor E : C op × C →
Ab.

(b) An object P ∈ C is projective if and only if C (P,−) = 0, if and only if P ∼= 0 in C .

(c) An object I ∈ C is injective if and only if C (−, I) = 0, if and only if I ∼= 0 in C .

A key lemma in several of our proofs is the following:

Lemma 4.2.8. Let 0 6= δ ∈ E(Z,X) be any E-extension satisfying (AS1). Then the
following holds for any A ∈ C .

(a) For any 0 6= α ∈ E(A,X), there exists c ∈ C (Z,A) such that δ = c∗α.

(b) For any 0 6= a ∈ C (A,X), there exists γ ∈ E(Z,A) such that δ = a∗γ.

Definition 4.2.9. Let (C ,E, s) be a K-linear extriangulated category.

(a) A right Auslander–Reiten–Serre duality is a pair (τ, η) of an additive functor τ : C → C
and a binatural isomorphism

ηX,Y : C (X, Y ) ' DE(Y, τX) for any X, Y ∈ C .

(b) If moreover τ is an equivalence, we say that (τ, η) is an Auslander–Reiten–Serre duality.

Theorem 4.2.10. Let C be a K-linear, Ext-finite, Krull-Schmidt, extriangulated category.
Then the following conditions are equivalent.

1. C has almost split extensions.

2. C has an Auslander–Reiten–Serre duality.
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4.2.3 Stable module theory.

In this section, we show that the existence of almost-split sequences can be characterised
in terms of the structure of the stable and the costable category. For this, we do not need
to assume that C is Krull–Schmidt.

We first note that, since C typically does not have weak kernel (e.g. when C is an
extension-closed subcategory of a triangulated category) the category of finitely presented
modules (coherent functors) over C is not closed under kernels, hence not abelian. However,
the situation becomes much more friendly when passing to the stable category:

Theorem 4.2.11. Let C be an extriangulated category with enough projectives and enough
injectives. Then the category mod C is an abelian category with enough projectives and
enough injectives,

proj C = add{C (−, A) | A ∈ C }, inj C = add{E(−, A) | A ∈ C }.

Moreover, we have equivalences C → proj C given by A 7→ C (−, A) and C → inj C given
by A 7→ E(−, A) up to direct summands.

The following consequence is worth noting:

Proposition 4.2.12. Let C be a K-linear extriangulated category with enough projectives
and injectives. Then C is Ext-finite if and only if C is Hom-finite if and only if C is
Hom-finite.

Let D be a K-linear additive category. Then any D-module F can be regarded as a

functor F : D → modK. We define a Dop-module DF as the composition D
F−→ modK D−→

modK.

Definition 4.2.13. [AR74] We call D a dualizing K-variety if the following conditions
hold.

(a) The category D is Hom-finite over K and idempotent complete.

(b) For any F ∈ mod D , we have DF ∈ mod Dop.

(c) For any G ∈ mod Dop, we have DG ∈ mod D .

In this case, we have an equivalence D : mod D ' mod Dop.

Theorem 4.2.14. Let C be a K-linear, Ext-finite extriangulated category with enough
projectives and enough injectives such that C and C are idempotent complete. Then the
following conditions are equivalent.

1. The extriangulated category C has an Auslander–Reiten–Serre duality.

2. The K-linear category C is a dualizing K-variety.
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3. The K-linear category C is a dualizing K-variety.

Remark 4.2.15. In [INP18, Section 7], we further investigate the structure of the stable
category, when C is Krull-Schmidt and has left almost-split sequences. We show that C
has the structure of a τ -category [Iya05], which implies the Radical Layers Theorem [IT84,
Iya05].

4.2.4 Stability of the existence of almost-split sequences.

In order to prove that a given extriangulated category has almost-split sequence, the fol-
lowing strategy is often useful: Show that the extriangulated category is obtained from
an exact or triangulated category with almost-split sequences by performing various cate-
gorical constructions that preserve existence of almost-split sequences. We consider here:
passage to relative extriangulated structures, to ideal quotients and to extension-closed
subcategories.

Definition 4.2.16. Let (C ,E, s) be an extriangulated category. An additive subfunctor F
of E is called a closed subfunctor if F-inflations are closed under composition or equivalently
if F-deflations are closed under composition.

The interest in that property comes from:

Proposition 4.2.17. [HLN17, Proposition 3.14] Let (C ,E, s) be an extriangulated cate-
gory, and let F be an additive subfunctor of E. Then the restriction (C ,F, s|F) is extrian-
gulated if and only if the subfunctor F is closed.

Remark 4.2.18. Without assuming the additive subfunctor to be closed, (C ,F, s|F) is
“pre-extriangulated” in the sense that all axioms but (ET4) and (ET4op) hold.

Proposition 4.2.19. Let (C ,E, s) be an extriangulated category having almost-split exten-
sions, and let F be an additive subfunctor of E. Then (C ,F, s|F) has almost-split extensions.

Remark 4.2.20. Surprisingly, this proposition is used in [PPPP19, Section 3] in order
to prove that the type cone of g-vector fans of cluster algebras of finite type is simplicial.
Indeed, in that proof, we are led to consider the relative extriangulated structure of cluster
categories given by extensions that factor through some given cluster-tilting object.

Proposition 4.2.21. Let (C ,E, s) be an extriangulated category and let D ⊆ C be a strictly
full, additive subcategory such that all objects in D are both projective and injective. Let
δ ∈ E(Z,X) be an almost-split extension. Then δ induces an almost-split extension in
C /D (endowed with its extriangulated structure canonically induced from that of C ).

Our last result is inspired from [Jør09].

Proposition 4.2.22. Let C be a Krull–Schmidt extriangulated category, and let D ⊆ C be
a contravariantly finite, full, additive, extension-closed subcategory. If C has almost-split
sequences, then so has D.
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The following consequence is used in [PPPP19, Section 4], in relation with gentle alge-
bras.

Proposition 4.2.23. Let Λ be an Artin algebra and let K [−1,0](proj Λ) be the full sub-
category of the homotopy category Kb(proj Λ) consisting of complexes concentrated in de-
grees −1 and 0 (using cohomological conventions). Then K [−1,0](proj Λ) has almost-split
sequences.

4.3 Applications to gentle algebras.

In this section, we discuss two results that illustrate the application of the theory of extri-
angulated categories to the study of gentle algebras. The first one is taken from [PPPP19,
Section 4] and describes an abstract setting in which holds an analogue of a result of M.
Auslander describing minimal relations for the Grothendieck groups of module categories
over Artin algebras [Aus84]. The second result is part of a work in progress with Osamu
Iyama, Hiroyuki Nakaoka and Salvatore Stella, and describes an extriangulated categorifi-
cation of all bending walks (see Section 3.1) on a gentle algebra.

4.3.1 Relations for Grothendieck groups.

Assumption 4.3.1. Fix an extriangulated category C with a strictly full, additive subcate-
gory T , stable under taking direct summands, and satisfying the following three properties:

1. Every T ∈ T is projective in C ;

2. For each T ∈ T , the morphism T → 0 is an inflation;

3. For each X ∈ C , there is an extriangle TX1 � TX0 � X
δX
99K in C with TX0 , T

X
1 in T .

Example 4.3.2. Examples of categories satisfying Assumption 4.3.1 are:

• the 2-Calabi–Yau triangulated categories admitting a cluster-tilting subcategory T ,
endowed with the relative extriangulated structure given by extensions factoring
through ΣT ;

• for any Artin algebra Λ, the category K [−1,0](proj Λ) of complexes of finitely generated
projective Λ-modules concentrated in degrees −1 and 0, with morphisms considered
up to homotopy;

Remark 4.3.3. For any object T ∈ T , we fix an extriangle T � 0 � ΣT 99K. This
notation extends to an equivalence of categories from the category T of projective objects
in C to the category ΣT of injective objects in C .

Notation 4.3.4. We let F : C → Mod T be the functor defined on objects by sending X ∈
C to C (−, X)|T .
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Lemma 4.3.5. For any X ∈ C , the functor FX is finitely presented. We thus have a
functor

F : C → mod T .

Proposition 4.3.6 below extends similar results from [BMR07, KR07, KZ08, IY08] to
the setting under consideration.

Proposition 4.3.6. The functor F induces an equivalence of categories

F : C /(ΣT )→ mod T

where (ΣT ) is the ideal of morphisms factoring through an object of the form ΣT , for
some T ∈ T .

Definition 4.3.7. We let K0(C ) denote the Grothendieck group of C , that is, the quotient
of the free abelian group generated by symbols [X], for each X ∈ C , by the relations [X]−
[Y ] + [Z], for each conflation X � Y � Z in C .

Remark 4.3.8. Since T is extension-closed in C , it inherits an extriangulated structure.
Because T is made of projective objects in C , its extriangulated structure splits and we
have K0(T ) ∼= Ksp

0 (T ).

The notion of index from [DK08, Pal08] generalises to our current setting.

Definition 4.3.9. For any object X ∈ C , fix some extriangle TX1 � TX0 � X
δX
99K and

define the index of X by

indT X = [TX0 ]− [TX1 ] ∈ K0(T ).

Proposition 4.3.10. The assignment X 7→ indT X is well-defined and induces an isomor-
phism of abelian groups:

indT : K0(C )
∼=−→ K0(T ).

We assume moreover that C is Krull–Schmidt, K-linear, Ext-finite, and has Auslander–
Reiten–Serre duality (Section 4.2), and that the subcategory T is of the form addT ,
where T = T1 ⊕ · · · ⊕ Tn is a basic object.

Notation 4.3.11. For any X, Y ∈ C , let

〈X, Y 〉 := dimK HomT (FX,FY ) = dimK C /(ΣT )(X, Y ).

For any almost-split sequence X � E � Y 99K, define

`X := [X] + [Y ]− [E] ∈ Ksp
0 (C ).
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Theorem 4.3.12. Assume that C is a K-linear, Ext-finite, Krull–Schmidt, extriangulated
category with Auslander–Reiten–Serre duality. Assume that T is a projective object of C
such that any X ∈ C admits a conflation TX1 � TX0 � X with TX0 , T

X
1 ∈ add(T ), and the

morphism T → 0 is an inflation. Fix a conflation T → 0→ ΣT . Then C has only finitely
many isomorphism classes of indecomposable objects if and only if the set

L :=
{
`X
∣∣ X ∈ ind(C ) r add(ΣT )

}
generates the kernel of the canonical projection g : Ksp

0 (C ) → K0(C ). In this case, the
set L is a basis of the kernel of g, and for any x ∈ ker(g), we have that

x =
∑

A∈ind(C )radd(ΣT )

〈x,A〉
〈`A, A〉

`A.

Our main motivation for Theorem 4.3.12 was Corollary 4.3.13 below which, when ap-
plied to the specific case of (2-acyclic, brick) gentle algebras, shows that the type cone of
their g-vector fans is simplicial.

Corollary 4.3.13. Under the assumptions of Theorem 4.3.12, suppose moreover that ind(C )
is finite. Let X � E � Y 99K be any extriangle. Then the element x = [X] + [Y ]− [E] of
the kernel of g is a non-negative linear combination of the `A, with A ∈ ind(C )radd(ΣT ).

4.3.2 Simplicial type cones from gentle algebras.

In this section, we explain, following [PPPP19, Section 4], how to apply Theorem 4.3.12
and Corollary 4.3.13 to study the type cone of the g-vector fans of gentle algebras (see
Section 2.3.1).

Lemma 4.3.14. Let Λ be any finite-dimensional K-algebra. Then the category K [−1,0](proj Λ)
is an extriangulated category satisfying all assumptions of Theorem 4.3.12.

Definition 4.3.15. Recall that a two-term silting object is a complex T in K [−1,0](proj Λ)
such that HomKb(T,ΣT ) = 0 and the number of isomorphism classes of indecomposable
summands of T is the same as that of Λ.

Remark 4.3.16. The definition given above is only equivalent to the usual definition of a
silting object for two-term complexes of projectives.

Definition 4.3.17. A conflation X � E � Y of K [−1,0](proj Λ) is called a mutation
conflation if there are basic, two-term, silting objects X ⊕ R, Y ⊕ R, with X and Y
indecomposable, such that the inflation X � E is a left (addR)-approximation.

Remark 4.3.18. In Definition 4.3.17, the requirement that X and Y are indecomposable
implies the map E � Y is a right (addR)-approximation, and that both approximations
are minimal.
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Proposition 4.3.19. Let Λ be a finite-dimensional K-algebra, where K is a field. Let X
and Y be objects of K [−1,0](proj Λ).

1. If there is a mutation conflation (see Definition 4.3.17) of the form X � E � Y ,
then there can be no mutation conflation of the form Y � E ′ � X.

2. Assume that X � E � Y and X � E ′ � Y are two mutation conflations. Then E
and E ′ are isomorphic.

Corollary 4.3.20. The g-vector fans of gentle algebras satisfy the unique exchange relation
property (see Definition 2.3.10).

Theorem 4.3.21. Let Λ be an Artin algebra all of whose indecomposable objects are τ -
rigid bricks. Then the almost-split conflations of K [−1,0](proj Λ) are mutation conflations if
and only if for any non-projective indecomposable Λ-module M , the space HomΛ(M, τ 2M)
vanishes.

Corollary 4.3.22. Let Λ be a finite dimensional brick algebra of finite representation type.
Assume moreover that, for any indecomposable Λ-module M , the space HomΛ(M, τ 2M)
vanishes. Then the support τ -tilting fan of Λ has the unique exchange relation property
(see Definition 2.3.10) and its type cone is simplicial (see Section 2.3.1).

As a consequence of Corollary 4.3.22, we give an explicit description of all realizations of
the support τ -tilting fan of Λ. Another consequence is an algebraic proof of Corollary 4.3.24
below, that we also proved by purely combinatorial methods.

Definition 4.3.23. A gentle algebra is called brick if all its indecomposable representations
are bricks, and 2-acyclic if its Gabriel quiver does not contain any oriented 2-cycle.

Corollary 4.3.24. For any brick and 2-acyclic gentle algebra, the type cone of its sup-
port τ -tilting fan is simplicial.

4.3.3 The extriangulated category of walks.

This section, presenting a work in progress with Hiroyuki Nakaoka, is motivated by the fol-
lowing remark. Let G be a grid, and let (Q, I) be the associated gentle algebra. Then, there
is a bijection between non-terminal, bending walks in G and isoclasses of indecomposable
representations of (Q, I). It is thus quite tempting to draw the Auslander–Reiten quiver of
(Q, I), but to replace the indecomposable at each vertex by the corresponding walk. Once
this is done, it becomes rather obvious that irreducible morphisms between indecomposable
representations correspond to some elementary moves on the walks, similarly to [CCS06]
for instance. A formal proof is given in [PPP17, Proposition 2.49].

At a first glance, this has very little interest, because such a combinatorial description
of the Auslander–Reiten quiver, by using elementary moves on strings, was already known.
However, I would like to point out two interesting facts. First, the elementary moves
for strings might be of two different sorts (add a hook, or remove a cohook), making the
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combinatorics slightly less agreable, whereas the elementary moves for walks are completely
uniform. Second, it is now possible to expand the Auslander–Reiten quiver by including
straight walks, and terminal walks: See Figure 4.1.
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Figure 4.1: The combinatorial translation quiver associated with a grid. Each row corre-
sponds to an orbit for the translation; it starts at an injective vertex (indicated by a right
bracket) and ends at a projective vertex (left bracket).
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Question 4.3.25. Is it possible to prove that this translation quiver is the Auslander–
Reiten quiver of some Krull–Schmidt, exact category?

We would like the straight walks to coincide with the isoclasses of indecomposable
projective-injective objects; initial walks to coincide with the isoclasses of indecomposable
projective non-injective objects; and the terminal walks to coincide with the isoclasses of
indecomposable injective non-projective objects. Note that we are mainly interested in the
reduced non-kissing complex, i.e. in the non-straight walks. It thus makes more sense to
study the ideal quotient, obtained by killing the projective-injectives, of the conjectural
exact category above. The results of Section 4.2.4 would apply and show that this quotient
is an extriangulated category with almost-split sequences.

Let (Q, I) be a gentle bound quiver.

Definition 4.3.26. The exact category of walks is defined as the full subcategory W of
modA` on those objects M that satisfy HomA`(τ−1 socP,M) = 0 for any P ∈ projS`

and HomA`(Q, τM) = 0 for any projective-injective A`-module Q.

Remark 4.3.27. The subcategory W is extension-closed in modA`, and is thus an exact
category.

The next lemma explains the name for W .

Lemma 4.3.28. Let σ be a string for the gentle bound quiver (Q`, I`). Then the string
module Mσ belongs to W if and only if σ is a walk for (Q, I).

The next two results illustrate the fact that W categorifies the combinatorics of walks.

Lemma 4.3.29. Let ω be a maximal string for (Q`, I`). The following properties holds:

• The projective objects of W are precisely the non-simple projective A`-modules.

• The injective objects of W are precisely the non-simple injective A`-modules.

• The string module Mω is projective and non-injective in W if and only if ω is a
projective (initial) walk.

• The string module Mω is injective and non-projective in W if and only if ω is a
shifted projective (terminal) walk.

• The string module Mω is projective and injective in W if and only if ω is a straight
walk.

Proposition 4.3.30. Let W red be the ideal quotient of W by the projective-injectives, and
let ω, ω′ be two walks on (Q, I). Then E(Mω′ ,Mω) 6= 0 in the extriangulated category W red

if and only if the walk ω kisses the walk ω′.
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Chapter 5

Homotopical algebra.

Model categories were introduced by Daniel G. Quillen [Qui67] as an axiomatization of
homotopy theory and of homological algebra. Model category structures can be thought
of as an enrichement of triangulated categories, which is particularly well-adapted to the
computation of homotopy limits and colimits. Homotopical algebra is also the language
that is used in order to compare different models for infinity-categories. In this chapter, we
present two results relating to model category structures. In the first section, we shed new
lights on results by Aslak B. Buan and Robert J. Marsh on categories of representations
of endo-rigid algebras [BM13, BM12]. In the second section, we extend Hovey’s correspon-
dence [Hov07, Gil11] to the case of extriangulated categories. Our main result is that the
homotopy category of an exact model structure is always triangulated.

5.1 From triangulated categories to module categories

via Homotopical algebra.

Our aim in this section is to give a homotopical algebraic interpretation of a result of Aslak
Buan and Robert Marsh [BM13] (see also [BM12, Bel13]) on some localisations, associated
with rigid objects, of triangulated categories. This inspired the homotopical algebraic
part [JM17] of Lucie Jacquet-Malo’s PhD thesis, which deals with the surprisingly more
technical case of exact categories; a setting in which the results of Aslak Buan and Robert
Marsh were not previously known.

5.1.1 Endomorphism algebras of rigid objects.

The interest in rigid objects of module categories and of triangulated categories arose in
tilting theory. The study of cluster algebras revived this interest: Rigid objects in cluster
categories categorify the cluster monomials of an associated cluster algebra.

Let C be a triangulated category with suspension functor Σ. An object T in C is called
rigid if it has no non-trivial self-extensions, i.e. if C (T,ΣT ) = 0. A rigid object T is called
maximal rigid if moreover T ⊕X is rigid if and only if X ∈ addT , where addT is the full

87
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subcategory of C whose objects are the direct summands of finite directs sums of copies of
T . One nice feature of rigid objects in a triangulated category is that all the information
concerning their representation theory is contained in the triangulated category:

Theorem 5.1.1 (Buan–Marsh–Reiten [BMR07]). Let K be a field, let Q be an acyclic
quiver, and let C = Db(KQ)/τ−1[1] be the associated cluster category [BMR+06]. If T is a
maximal rigid object of C , then the functor C (T,−) induces an equivalence of categories:

C /(ΣT )
'−→ mod EndC (T )op,

where (ΣT ) denotes the ideal of morphisms factoring through add ΣT .

We note that, if X ∈ C , then the mod EndC (T )op-module structure on the finite dimen-
sional K-vector space C (T,X) is given by precomposition. Theorem 5.1.1 was generalised
in various directions; see for instance [KZ08, KR07, IY08, JJ19]. In particular, it is shown
in [KZ08] that the abelian structure on CQ/(ΣT ) can be described in terms of the trian-
gulated structure [Kel05] of CQ.

Let us state a generalisation due to Osamu Iyama and Yuji Yoshino [IY08], which was
the starting point for the work of Aslak Buan and Robert Marsh in [BM13].

Theorem 5.1.2 (Iyama–Yoshino [IY08]). Let K be a field and let C be a K-linear, Hom-
finite, Krull–Schmidt, triangulated category with some rigid object T . The full subcategory
of C whose objects are cones of morphisms in addT is denoted by T ∗ΣT . Then the functor
C (T,−) induces an equivalence of categories:

T ∗ ΣT/(ΣT )
'−→ mod EndC (T )op.

From this result arise the following questions: What are the properties of the func-
tor C (T,−) : C → mod EndC (T )op? Is it possible to describe the module category
mod EndC (T )op from C , without computing the subcategory T ∗ ΣT?

The answer given by Aslak Buan and Robert Marsh is that C (T,−) is a localisation
functor.

5.1.2 Localisations.

The following situation arises in various fields of mathematics. Assume that C is a category
with some class W of morphisms, called weak equivalences. If there is a weak equivalence
from X to Y , one would like to think of X and Y as being isomorphic. For example,
C might be the category of complexes of modules over some ring, and W the class of
quasi-isomorphisms (morphisms inducing isomorphisms on homologies). Or C might be
the category of compactly generated (weak Hausdorff) topological spaces, withW the class
of weak (homotopy) equivalences: the morphisms inducing bijections on homotopy groups,
for all choices of a base point.

There is a method [GZ67] for constructing a new category C [W−1] having the same
objects as C but where morphisms in W become isomorphisms.
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Definition 5.1.3. A localisation of C at W is the datum of a functor C
L−→ C [W−1]

with the property that, for any functor C
F−→ D such that Fw is an isomorphism in D

whenever w is in W , there is a unique functor C [W−1]
G−→ D such that GL = F :

C F //

L
��

D

C [W−1]
G

;;

We note that the diagram above is required to commute “on the nose” and not only up
to some natural isomorphism. In particular, the category C [W−1], if it exists, is unique
up to isomorphism (and not just up to equivalence). However, this is mostly a matter of
taste and an “up to equivalence” version of the definition also exists in the literature.

The recipe given in [GZ67] for constructing C [W−1] can be sketched as follows: Consider
all words on (composable) morphisms of C and formal inverses w−1 to all morphisms w
in W , up to the equivalence relation obtained by identifying subwords of the form fg and
f ◦ g, 1f or f1 and f , and ww−1 or w−1w and 1. The “category” with objects the objects
of C , with morphisms the equivalence classes of words, and with composition induced by
concatenation of words is a localisation of C at W . Unfortunately, there is some set-
theoretic issue with this construction: The collection of all morphisms between two objects
might form a proper class rather than a set. As shown by Theorem 5.1.4, this issue does
not arise in the setup considered in [BM13].

Let C be, as in Theorem 5.1.2, a K-linear, Hom-finite, Krull–Schmidt, triangulated
category, and let T ∈ C be rigid. We write T⊥ for the full subcategory of C whose objects

X satisfy C (T,X) = 0. Let S be the class of morphisms X
f−→ Y such that, for some

(equivalently, any) triangle Z
g−→ X

f−→ Y
h−→ ΣZ, both morphisms g and h belong to

the ideal (T⊥) of morphisms factoring through T⊥.

Theorem 5.1.4 (Buan–Marsh [BM13]). Let C be a K-linear, Hom-finite, Krull–Schmidt,
triangulated category with a Serre functor, and let T ∈ C be rigid.

1. For any morphism s ∈ S, C (T, s) is an isomorphism in mod EndC (T )op.

2. The functor C [S−1]
G−→ mod EndC (T )op induced from C (T,−) is an equivalence of

categories.

In particular, the localisation of C at S exists: The construction of [GZ67] is a (small)
category. A key lemma in the proof of Theorem 5.1.4 is:

Lemma 5.1.5 (Buan–Marsh [BM13]). Let X ∈ C . Then there is a triangle Y
g−→ A

f−→
X

h−→ ΣY , with A ∈ T ∗ ΣT , Y ∈ T⊥ and h ∈ (T⊥). In particular, the modules C (T,A)
and C (T,X) are isomorphic.
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Under the assumptions of Theorem 5.1.4, we thus obtain two equivalent categories.
The first one is the localisation of C at some class of morphisms S. The second one is
the full subcategory T ∗ΣT of C where morphisms are considered up to some equivalence
relations (two morphisms f and g are equivalent if f − g factors through add ΣT ). This
is reminiscent to the theory of model categories [Qui67]. Our aim is to make this analogy
more precise: We will give some homotopical algebraic interpretation of Theorem 5.1.4,
and of Lemma 5.1.5. Our main motivation for pushing this analogy farther was the hope
that it might provide a tool allowing for a generalisation of Theorem 5.1.4 including the
case of Hom-infinite cluster categories ([Ami09], [Pla11b]).

5.1.3 Model categories.

Model categories, which axiomatise homotopy theory, were introduced by Daniel G. Quillen
in [Qui67]. Let C be a category andW a collection of morphisms to be inverted. If (C ,W)
can be endowed with a model category structure, then the localisation, called Ho C , of C
at W exists (and comes equipped with more structure).

This axiomatic version of homotopy theory was called homotopical algebra by Daniel G.
Quillen, since it subsumes both homological algebra (when C is the category of complexes
of modules over a ring, W is the class of quasi-isomorphisms, and Ho C is the derived
category) and homotopy (e.g. when C is the category of compactly generated topological
spaces,W is the class of weak equivalences, and Ho C is the homotopy category of spaces).

Notation. For two morphisms f, g in a category C , we write f � g if, for any commutative
square

X a //

f
��

X ′

g

��
Y

b
//

α

>>

Y ′,

there is a lift α such that αf = a and gα = b. In that case, we consider f and g to be
weakly orthogonal. Thus, if D is a full subcategory of C , we will use the notations D� and
�D.

Assume that C has finite limits and colimits (some authors assume all small limits and
colimits). Then a model category structure on C is the datum of three classes W ,Fib, Cof
of morphisms, called respectively weak equivalences, fibrations and cofibrations, satisfying
some set of axioms inspired from basic homotopy theory. The first two axioms concern the
stability properties of W ,Fib, Cof , and the other two axioms ensure that the three classes
interact nicely. More explicitely:

1. The weak equivalences have the two-out-of-three property: For any composable f
and g, if any two of f, g and gf are weak equivalences, then so is the third.

2. The classes W ,Fib and Cof contain all identities, are closed under compositions and
under taking retracts (in the category of morphisms of C ).
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3. Lifting properties: (W ∩ Cof )�Fib and Cof � (Fib ∩W).

4. Factorisations: Any morphism belongs both to Fib◦(W∩ Cof ) and to (Fib ∩W)◦Cof .

By Axiom (4), any morphism f admits two factorisations:

X
f

Y

X ′
∼
i p

X
f

Y

Y ′j
∼
q

where i is a cofibration and a weak equivalence, p is a fibration, j is a cofibration and q is a
fibration and a weak equivalence. An object X is fibrant if the canonical morphism from X
to the terminal object ∗ of C (which exists since C has finite limits) is a fibration. Dually,
A is cofibrant if the canonical morphism from the initial object ∅ to A is a cofibration. By
applying Axiom (4) to X → ∗ and ∅ → X, every object X is seen to be weakly equivalent
to some fibrant object and to some cofibrant object. These are called respectively fibrant
replacement and cofibrant replacement. Let Ccf be the full subcategory of C whose objects
are both fibrant and cofibrant. In any model category, one can define path objects, cylinder
objects and homotopies thus giving an axiomatic version of the corresponding notions for
topological spaces. We write f 'htp g if two morphisms f and g are homotopic.

Theorem 5.1.6 (Quillen [Qui67]). Let C be a model category and let Ho C be the locali-
sation of C at the class of weak equivalences. Then:

(i) For any X, Y ∈ Ccf , homotopy is an equivalence relation on C (X, Y ), compatible
with composition.

(ii) The inclusion of Ccf into C induces an equivalence of categories

Ccf/'htp −→ Ho C .

In particular Ho C is a (small) category.

There are two similar pictures coming from different setups in Theorems 5.1.4 and 5.1.6:

C 3 T rigid

T∗ΣT
(ΣT ) C [S−1]

'

C model category

Ccf/'htp C [W−1]
'

Our main result is motivated by this analogy.
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5.1.4 Model structures from rigid objects.

Let C be a triangulated category and let T ∈ C be rigid and contravariantly finite. LetW
be the class of morphisms X

f−→ Y such that, for any triangle Z
g−→ X

f−→ Y
h−→ ΣZ,

both morphisms g and h belong to the ideal (T⊥).
Consider J := {0 → ΣT} and I :=

⋃
C (R,A), where the union is taken over a set of

representatives for the isomorphism classes of objects R ∈ addT and A ∈ T ∗ ΣT . We
define three classes of morphisms: Fib := J�, wFib := I� and Cof := �wFib.

Theorem 5.1.7. [Pal14, Theorem 2.2] Let C be a triangulated category and let T ∈ C
be rigid and contravariantly finite. Then the datum of (W, Fib, Cof ) is almost a model
category structure on C . Moreover:

(i) All objects are fibrant.

(ii) An object is cofibrant if and only if it belongs to T ∗ ΣT .

(iii) Two morphisms of fibrant and cofibrant objects are homotopic if and only if their
difference factors through add ΣT .

There are two reasons for the appearance of the term almost in the statement above.
First, the category C does not have finite (let alone all small) limits and colomits in
general: It only has finite direct sums, weak kernels and weak cokernels. However, these
are enough in order to deduce the equivalence of categories in Theorem 5.1.6. Second,
every morphism can be factored out as a trivial cofibration followed by a fibration, but the
second factorisation only exists for morphisms with cofibrant domain. Again, this causes
no trouble because any object is weakly equivalent to some cofibrant object.

As a consequence of the model structure, we obtain a homotopical interpretation of
Buan–Marsh’s result: it is an application of Quillen’s Theorem 5.1.6!

Corollary 5.1.8. The inclusion of T ∗ ΣT into C induces an equivalence of categories
from T ∗ ΣT/(ΣT ) to C [W−1]. In particular, the localisation of C at W exists.

We also give an homotopical interpretation of their key lemma:

Corollary 5.1.9. The morphism A→ X of Lemma 5.1.5 is a cofibrant replacement.

Remark 5.1.10. In [Bel13, Lemma 4.4 and Theorem 4.6], Apostolos Beligiannis proved a
generalised version of Theorem 5.1.4, which applies to contravariantly finite, rigid subcat-
egories. This is also the generality in which we prove Theorem 5.1.7.

Remark 5.1.11. The localisation C → C [W−1] does not admit a calculus of fractions.
However:

1. It is shown by Aslak Buan and Robert Marsh in [BM12] that the localisation functor
factors as C → C /(ΣT ) → (C /(ΣT ))[W−1], where the second functor is a localisa-
tion that admits a calculus of fractions. This should be interpreted as C → C [W−1]
having a calculus of fractions up to homotopy.



5.2. HOVEY’S CORRESPONDENCE IN EXTRIANGULATED CATEGORIES. 93

2. This calculus of fractions up to homotopy was proven, for exact categories, by Lucie
Jacquet-Malo in her PhD thesis [JM17], by a purely homotopical algebraic approach,
using a slight modification of the notion of a prefibration category in the sense of
Radulescu-Banu [RB06].

5.2 Hovey’s correspondence in extriangulated cate-

gories.

Hovey’s correspondence [Hov02, Hov07] is a device for constructing model category struc-
tures on abelian categories. It is inspired by the somewhat canonical model category
structure on a Frobenius category, but with two cotorsion pairs mimicking the role played
by the projectives and the injectives. A similar, but slightly weaker correspondence, due
to Apostolos Beligiannis and Idun Reiten and involving only one cotorsion pair appeared
independently in [BR07, Theorem 4.2] (we note however, that their Theorem 3.5 sug-
gests that some stronger statement should hold). Hovey’s correspondence was generalised
to exact categories by James Gillespie [Gil11, Gil15, Gil16]. He also discovered that this
correspondence was a powerful tool for constructing model structures on categories of com-
plexes, with the derived category as its homotopy category. The strategy of passing from
a cotorsion pair on an exact category to a model structure on the category of complexes
has recently been considered, and beautifully generalised, by Henrik Holm and Peter Jør-
gensen [HJ19]. In that article, the category of complexes is thought of as a category of
representations of the A∞∞ quiver with radical square zero relations. This point of view
allow them to generalise Gillespie’s result to categories of representations of self-injective
bound quivers, thus including categories of n-term complexes, of periodic complexes and
many more. We also note the use of Gillespie’s result in order to define the stable category
of an arbitrary ring in [BGH14]

Hovey’s correpondence has also been generalised in a different direction: the proof more
or less applies as such to triangulated categories, with short exact sequences being replaced
by triangles [Yan15].

5.2.1 Hovey’s correspondence.

A model structure is equivalently described as two“intertwined”weak factorisation systems.

Definition 5.2.1. A weak factorisation system on a category C is a pair (L,R) of classes
of morphisms in C satisfying:

1. The classes L and R are stable under retracts;

2. Any morphism f ∈ C factorises as f = r ◦ l, for some r ∈ R and l ∈ L;
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3. The classes L and R are weakly orthogonal in the sense that any commutative square

A α //

l
��

X

r
��

B
β
//

γ
??

Y,

with l ∈ L and r ∈ R, admits a lifting γ making both triangles commute.

Notation 5.2.2. We write l� r if, for any morphisms α, β such that the square above
commutes, there is a lifting γ. We also write L�R when l� r for any (l, r) ∈ L ×R.

The strong link between weak factorisation systems and cotorsion pairs arises from the
following:

Lemma 5.2.3. Let E be an exact category and let A
f
� B � C, K � X

g
� Y be two

conflations (= short exact sequences). Assume that Ext1
E (C,K) = 0. Then f � g.

Definition 5.2.4. A (complete) cotorsion pair in an exact category is a pair (U ,V) of full
subcategories such that, for any X ∈ E , the following holds:

1. We have X ∈ V if and only if for any U ∈ U , Ext1
E (U,X) = 0.

2. We have X ∈ U if and only if for any V ∈ V , Ext1
E (X, V ) = 0.

3. There are conflations VX � UX � X and X � V X � UX with UX , U
X ∈ U and

VX , V
X ∈ V .

The following is mostly a consequence of Lemma 5.2.3.

Proposition 5.2.5. Let (U ,V) be a cotorsion pair on an exact category E . Define L to
be the class of all those inflations whose cokernel belongs to U . Dually, define R to be the
class of all those deflations whose kernel belongs to V. Then (L,R) is a weak factorisation
system.

Remark 5.2.6. In a work (not) in progress with Peter Jørgensen, we proved a version
adapted to higher homological algebra: Let C be an n-angulated category with suspension

functor Σ (a similar statement holds in the n-exact case), and let A
f→ B → C∗ → ΣA

and X
g→ Y → Z∗ → ΣX be two n-angles. Then f � g if and only if any morphism of

complexes C∗ → Z∗ is null-homotopic.

Let C be a category with finite products and coproducts. Then a model structure on C
is equivalently defined as three classes of morphisms (Fib, Cof ,W) such that (Cof ∩W,Fib)
and (Cof ,Fib ∩W) are weak factorisation systems and the class W satisfies the two-out-
of-three condition. This was first noticed by André Joyal and Myles Tierney when C
either has push-outs or has pull-backs (see also [MP12, Lemma 14.2.5]). The general case
follows from [Egg06] and the fact that weak equivalences are precisely those morphisms
that become isomorphisms in the localisation C [W−1]. This is explained in detail in Pierre
Cagne’s PhD Thesis [Cag18, Section 2.2].
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Question 5.2.7. Let (S, T ), (U ,V) be two cotorsion pairs on an exact category E . We
obtain, by Proposition 5.2.5, two weak factorisation systems (wCof ,Fib), (Cof , wFib). De-
fine W = wFib ◦wCof . Under which conditions on the two cotorsion pairs is (Fib, Cof ,W)
a model structure on E ?

Note that if (Fib, Cof ,W) is a model structure on E , then an object is cofibrant (resp.
fibrant, trivially cofibrant, trivially fibrant) if and only if it belongs to U (resp. to T , S, V).
Part of the answer to Question 5.2.7 is then rather immediate: First, it is necessary that
S ⊆ U and V ⊆ T (those two conditions are equivalent). Second, both U ∩ V and S ∩ T
should be the full subcategory of trivially cofibrant and trivially fibrant objects, hence it
is necessary that U ∩ V = S ∩ T . The last condition is less obvious, and arises when
considering the following question: Is it possible to read the two-out-of-three property for
W directly on the two cotorsion pairs? Some very specific instance of the two-out-of-three
property implies that, for any object X in E , the morphism 0→ X is a weak equivalence
if and only if so is X → 0. This easily translate to a condition on (S, T ), (U ,V). It turns
out that this condition implies the two-out-of-three property for W in full generality.

Definition 5.2.8. Two cotorsion pairs (S, T ), (U ,V) on an exact category E are called:

1. Twin cotorsion pairs if S ⊆ U (or equivalently V ⊆ T );

2. Concentric twin cotorsion pairs if moreover U ∩ V = S ∩ T ;

3. Hovey twin cotorsion pairs if moreover, for any object X, the existence of a conflation
V � S � X with V ∈ V , S ∈ S is equivalent to the existence of a conflation
X � V ′ � S ′ with V ′ ∈ V , S ′ ∈ S.

Remark 5.2.9. Any Hovey twin cotorsion pairs are concentric.

Not all model structures on E can be expected to come from twin cotorsion pairs (for
counter-examples, see the model structures arising from rigid objects in [JM17]). However,
all those that interact nicely with the exact structure do.

Definition 5.2.10. A model structure on E is called an exact model structure if cofibra-
tions are precisely those inflations whose cokernel is cofibrant and fibrations are precisely
those deflations whose kernel is fibrant.

In an exact model structure, the acyclic cofibrations coincide with the inflations having
a trivially cofibrant cokernel, and the acyclic fibrations coincide with the deflations having
a trivially fibrant kernel.

For some technical reasons, Gillespie’s version of Hovey’s correspondence requires the
exact category to be weakly idempotent complete:

Definition 5.2.11. An additive category is weakly idempotent complete if any section has
a cokernel and any retraction has a kernel. For exact categories, those two conditions are
equivalent and also equivalent to the fact that if g ◦ f is a deflation (resp. an inflation)
then g is a deflation (resp. f is an inflation).



96 CHAPTER 5. HOMOTOPICAL ALGEBRA.

We are now ready to give a slightly reformulated statement of Gillespie’s generalisation
to exact categories of Hovey’s correpondence.

Theorem 5.2.12 (Hovey; Gillespie). Let E be a weakly idempotent complete exact cate-
gory. Then there is a bijective correspondence between exact model structures on E and
Hovey twin cotorsion pairs on E .

If (Fib, Cof ,W) is an exact model structure, the associated cotorsion pairs are given by
(wcof,fib), (cof,wfib) where cof (resp fib, wcof, wfib) is the class of cofibrant (resp. fibrant,
trivially cofibrant, trivially fibrant) objects. Conversely, if (S, T ), (U ,V) are Hovey twin
cotorsion pairs, the associated (Fib, Cof ,W) is given by the following recipe: a morphism
is a fibration (resp. cofibration) if and only if it is a deflation with kernel in T (resp. an
inflation with cokernel in U) and a morphism is in W if and only if it factorises as an
inflation with cokernel in S followed by a deflation with kernel in V .

5.2.2 Homotopy categories of exact model categories.

In [NP19], it is shown that Hovey’s correspondence also holds for extriangulated categories.
Almost all the definitions of the previous section have obvious analogues for extriangulated
categories. The only exception is weak idempotent completeness, which does not seem to
be equivalent to the characterisation which is used in Gillespie’s proof of Hovey’s corre-
spondence for exact categories.

We refer to Section 4.1 for an introduction to the language of extriangulated categories.

Definition 5.2.13. An extriangulated category C is said to satisfy condition (WIC) if,
for any pair of composable morphisms (f, g), if g ◦ f is an inflation, then f is an inflation
and if g ◦ f is a deflation, then g is a deflation.

In that setting, we call admissible model structure, the analogue of what was called an
exact model structure in the previous section.

Theorem 5.2.14. [NP19, Proposition 5.6 and Section 5.3] Let C be an extriangulated
category satisfying condition (WIC). Then there is a bijective correspondence between ad-
missible model structures on C and Hovey twin cotorsion pairs on C .

The recipe for constructing a model structure out of some Hovey twin cotorsion pairs
is similar to that for exact categories.

Corollary 5.2.15. Let C be an extriangulated category satisfying condition (WIC), and
let (S, T ), (U ,V) be Hovey twin cotorsion pairs on C . Then the inclusion T ∩ U → C
induces an equivalence of categories

T ∩ U / (S ∩ V)
'−→ C [W−1]

expressing the localisation of C at the class W as an ideal subquotient of C .
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Remark 5.2.16. In the specific case when C is triangulated, (S, T ) = (U ,V) and the full
subcategory of C whose objects are weakly equivalent to 0 is thick (this latter condition
is related to the notion of a hereditary cotorsion pair, defined below), Corollary 5.2.15
recovers an independant result of Osamu Iyama and Dong Yang [IY17, Theorem 1.1],
which is inspired by, and generalises Amiot–Guo–Keller’s equivalence appearing in their
constructions of (higher, generalised) cluster categories.

Corollary 5.2.15 gives a strategy for studying the structure of the homotopy category
C [W−1].

Definition 5.2.17. A cotorsion pair (X ,Y) of an exact category E is called hereditary if
X is stable under taking kernels of epimorphisms (between objects in X ) and Y is stable
under taking cokernels of monomorphisms (between objects in Y).

Proposition 5.2.18 (Gillespie). Let E be an exact category with some Hovey twin cotor-
sion pairs (S, T ), (U ,V). Assume that (S, T ) and (U ,V) are hereditary. Then the homo-
topy category C [W−1], for the exact model structure obtained by Hovey’s correspondence,
is triangulated.

Proof. When (S, T ) and (U ,V) are hereditary, the category T ∩U is stable under extensions
in E , hence exact. Moreover, it is easily seen to be Frobenius, with projective-injective
objects S ∩V . Hence T ∩ U/(S ∩V) is triangulated, and so is C [W−1] by Corollary 5.2.15.

We give a generalisation of this result, which seems to be new already in the case of
exact categories.

Theorem 5.2.19. [NP19, Theorem 6.20] For any extriangulated category C satisfying
condition (WIC) and any Hovey twin cotorsion pairs (S, T ), (U ,V) on C , the associated
homotopy category C [W−1] is triangulated.

Remark 5.2.20. Under the assumptions of Theorem 5.2.19, the model structure on C
is not stable stricto sensu. However, the equivalent of the octahedral axiom gives specific
choices of weak bicartesian squares that compensate for the lack of stability. It might be
interesting to investigate in which sense those model structures might be considered stable.

A specific case of Theorem 5.2.19, Corollary 5.2.22 below, is worth mentionning as it
shows that Theorem 5.2.19 generalises two well-known results:

• When applied to Frobenius exact categories, it recovers Happel’s theorem that the
stable category is triangulated [Hap88].

• When suitably applied to triangulated categories, it recovers Iyama–Yoshino reduc-
tion [IY08].

Definition 5.2.21. A Frobenius extriangulated category is an extriangulated category
(C ,E, s) which has enough projectives and enough injectives and such that Proj(C ) =
Inj(C ).
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Corollary 5.2.22. Let (C ,E, s) be a Frobenius extriangulated category satisfying condition
(WIC). Then its stable category C /

(
Proj(C )

)
is triangulated.

Remark 5.2.23. Because this result is given as a corollary of Theorem 5.2.19, our proof
makes use of the model structure, and in particular of the fact that the homotopy category
is given as a localisation of C . However, it is possible to give a direct proof, mimicking that
of Happel (or that of Iyama–Yoshino), which shows that assumption (WIC) is not needed.
This approach has been carefully carried out by Owen Garnier in his Master 1 thesis.

We conclude this section with the hope that extriangulated categories might be related
to higher category theory.

Remark 5.2.24. There is a notion of exact infinity-categories [Bar15, Bar13], whose
homotopy categories are expected to be extriangulated (work in progress with Hiroyuki
Nakaoka). One might thus wonder if there exists a version of Hovey’s correpondence for
exact infinity-categories, enhancing Theorem 5.2.14.

5.2.3 Mutations of twin cotorsion pairs.

That cotorsion pairs form a good setup for studying mutations, even of cluster tilting
subcategories, goes back to [IY08]. In this section, we show that once we have fixed some
Hovey twin cotorsion pairs on C , there is a notion of mutation for cotorsion pairs on C . We
note that not all cotorsion pairs can be mutated (whence the notion of a mutable cotorsion
pair) and that mutation is not an involution in general.

Let C be an extriangulated category satisfying condition (WIC), and let P = ((S, T ), (U ,V))

be Hovey twin cotorsion pairs on C . Write C̃ for the localisation of C with respect to the
weak equivalences for the model structure associated with P , and ` : C → C̃ for the
localisation functor. By Theorem 5.2.19, the category C̃ is triangulated.

Definition 5.2.25. The class of mutable cotorsion pairs on C endowed with P is

MP =

{
(A,B) ∈ CP(C )

∣∣∣∣ S ⊆ A ⊆ UV ⊆ B ⊆ T , Ext1
C̃

(`(A), `(B)) = 0

}
.

Remark that the conditions in the definition of a mutable cotorsion pair are redundent.
Indeed, the conditions S ⊆ A and B ⊆ T are equivalent, and similarly for A ⊆ U and
V ⊆ B.

The main step towards defining some mutation is to show that mutable cotorsion pairs
in C correspond precisely to cotorsion pairs in the localisation C̃ .

Theorem 5.2.26. Let (C ,E, s) be an extriangulated category satisfying condition (WIC),
and let P = ((S, T ), (U ,V)) be Hovey twin cotorsion pairs on C . Sending a mutable cotor-
sion pair (A,B) to the pair R((A,B)) = (`((A), `(B)) and the cotorsion pair (L,R) to the
pair I((L,R)) = (U ∩ `−1(L), T ∩ `−1(R)) gives mutually inverse bijective correspondences

between mutable cotorsion pairs on C and cotorsion pairs on (̃C ).

R : MP
1:1←→ CP(C̃ ) : I
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Theorem 5.2.26 allows us to define a notion of mutation for mutable cotorsion pairs,
induced by the shift functor Σ on the triangulated category C̃ .

Definition 5.2.27. Under the assumptions of Theorem 5.2.26, let (A,B) ∈ MP be a
mutable cotorsion pair. The mutation of (A,B) with respect to (S,V) is the mutable
cotorsion pair

µ(A,B) = I ◦ Σ ◦ R (A,B) =
(
U ∩ `−1(Σ `(A)), T ∩ `−1(Σ `(B))

)
.

This definition of mutation is inspired from Osamu Iyama and Yuji Yoshino’s approach
to the mutation of cluster tilting objects in [IY08]. It aims at generalising various notions
of mutation that appear in the literature: mutation of cluster tilting objects, of 2-term
silting objects, of (intermediate bounded) t-structures and of (intermediate bounded) co-
t-structures. For that purpose, it would be interesting to generalise mutation with respect
to P from the case of Hovey twin cotorsion pairs to that of concentric twin cotorsion pairs.

The results in Section 5.2 rely heavily on additivity. However, many model categories
arising in nature are not additive. This raises the question of defining a non-additive
version of cotorsion pairs:

Question 5.2.28. Is there a version of Hovey’s correspondence adapted for the (non-
additive) proto-exact categories of [DK12] ?
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[BMDM+18] Véronique Bazier-Matte, Guillaume Douville, Kaveh Mousavand, Hugh
Thomas, and Emine Yıldırım. ABHY Associahedra and Newton polytopes of
F -polynomials for finite type cluster algebras. Preprint, arXiv:1808.09986,
2018.

[BMR+06] Aslak B. Buan, Robert J. Marsh, Markus Reineke, Idun Reiten, and Gordana
Todorov. Tilting theory and cluster combinatorics. Adv. Math., 204(2):572–
618, 2006.

[BMR07] Aslak B. Buan, Robert J. Marsh, and Idun Reiten. Cluster-tilted algebras.
Trans. Amer. Math. Soc., 359(1):323–332, 2007.

http://arxiv.org/abs/1803.05802
http://arxiv.org/abs/1707.07665
https://arxiv.org/abs/1405.5768
http://arxiv.org/abs/1802.01169
http://arxiv.org/abs/1808.09986


BIBLIOGRAPHY 103

[BMRT07] Aslak B. Buan, Robert J. Marsh, Idun Reiten, and Gordana Todorov.
Clusters and seeds in acyclic cluster algebras. Proc. Amer. Math. Soc.,
135(10):3049–3060, 2007. With an appendix coauthored in addition by P.
Caldero and B. Keller.

[BØO11] Marco Angel Bertani-Økland and Steffen Oppermann. Mutating loops and
2-cycles in 2-CY triangulated categories. J. Algebra, 334:195–218, 2011.

[BPR16] Aslak B. Buan, Yann Palu, and Idun Reiten. Algebras of finite representation
type arising from maximal rigid objects. J. Algebra, 446:426–449, 2016.

[BR87] M. C. R. Butler and Claus Michael Ringel. Auslander-Reiten sequences with
few middle terms and applications to string algebras. Comm. Algebra, 15(1-
2):145–179, 1987.

[BR07] Apostolos Beligiannis and Idun Reiten. Homological and homotopical aspects
of torsion theories. Mem. Amer. Math. Soc., 188(883):viii+207, 2007.

[BR15] Arkady Berenstein and Dylan Rupel. Quantum cluster characters of Hall
algebras. Selecta Math. (N.S.), 21(4):1121–1176, 2015.

[BT09] Aslak B. Buan and Hugh Thomas. Coloured quiver mutation for higher
cluster categories. Adv. Math., 222(3):971–995, 2009.

[Büh10] Theo Bühler. Exact categories. Expo. Math., 28(1):1–69, 2010.
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symmetrizable Cartan matrices V: Caldero-Chapoton formulas. Proc. Lond.
Math. Soc. (3), 117(1):125–148, 2018.

[GLS18d] Christof Geiß, Bernard Leclerc, and Jan Schröer. Rigid modules and Schur
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